pynovisao.py 27.1 KB
Newer Older
1 2 3 4
#!/usr/bin/python
# -*- coding: utf-8 -*-
#
"""
5 6 7 8
    This file must contain the implementation code for all actions of pynovisao.
    
    Name: pynovisao.py
    Author: Alessandro dos Santos Ferreira ( santosferreira.alessandro@gmail.com )
9 10 11
"""

from collections import OrderedDict
12
import numpy as np
13

14 15
import interface
from interface.interface import InterfaceException as IException
16

17
import segmentation
18
import extraction
19
from extraction import FeatureExtractor
20
import classification
21
from classification import Classifier
22

23 24 25
import util
from util.config import Config
from util.file_utils import File as f
26
from util.utils import TimeUtils
27

Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
28

29
class Act(object):
30
    """Store all actions of Pynovisao."""
31

Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
32
    def __init__(self, tk, thread, args):
33 34 35 36 37 38 39 40 41
        """Constructor.

        Parameters
        ----------
        tk : Interface
            Pointer to interface that handles UI.
        args : Dictionary
            Arguments of program.
        """
42
        self.tk = tk
43 44 45
        
        self.segmenter = [segmentation._segmenter_list[segmenter].meta for segmenter in segmentation._segmenter_list
                            if segmentation._segmenter_list[segmenter].value == True ][0]()
46 47 48
        
        self.extractors = [extraction._extractor_list[extractor].meta for extractor in extraction._extractor_list
                            if extraction._extractor_list[extractor].value == True ]
49 50 51 52 53 54
        
        try:
            self.classifier = [classification._classifier_list[classifier].meta for classifier in classification._classifier_list
                                if classification._classifier_list[classifier].value == True ][0]()
        except:
            self.classifier = None
55

56 57 58
        self._image = None
        self._const_image = None
        self._image_name = None
59
                    
60 61
        self._init_dataset(args["dataset"])
        self._init_classes(args["classes"], args["colors"])
62
        
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
63 64
        self.thread = thread

65
        self._dataset_generator = True
66 67
        self._ground_truth = False
        self._gt_segments = None
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
68
        self.weight_path = None
69

70
    
71
    def _init_dataset(self, directory):
72 73 74 75 76 77 78
        """Initialize the directory of image dataset.

        Parameters
        ----------
        directory : string
            Path to directory.
        """
79 80 81 82 83
        if(directory[-1] == '/'):
            directory = directory[:-1]
            
        self.dataset = directory
        f.create_dir(self.dataset)
84
    
85
    def _init_classes(self, classes = None, colors = None):
86 87 88 89 90 91 92 93 94 95
        """Initialize the classes of dataset.

        Parameters
        ----------
        classes : list of string, optional, default = None
            List of classes. If not informed, the metod set as classes all classes in dataset. 
            If there's no classes in dataset, adds two default classes.
        colors : list of string, optional, default = None
            List de colors representing the color of classe, in same order. If not informed, chooses a color at random.
        """
96 97 98 99 100 101 102 103 104 105 106 107
        self.classes = []
        
        classes = sorted(f.list_dirs(self.dataset)) if classes is None else classes.split()
        colors = [] if colors is None else colors.split()

        if(len(classes) > 0):
            for i in range(0, len(classes)):
                self.add_class(dialog = False, name=classes[i], color=colors[i] if i < len(colors) else None)
        else:
            self.add_class(dialog = False, color='Green')
            self.add_class(dialog = False, color='Yellow')
            
108
        self._current_class = 0
109
        
110

111
    def open_image(self, imagename = None):
112 113 114 115 116 117 118
        """Open a new image.

        Parameters
        ----------
        imagename : string, optional, default = None
            Filepath of image. If not informed open a dialog to choose.
        """
119 120
        
        def onclick(event):
121
            """Binds dataset generator event to click on image."""
122
            if event.xdata != None and event.ydata != None and int(event.ydata) != 0 and self._dataset_generator == True:
123 124
                x = int(event.xdata)
                y = int(event.ydata)
125 126 127 128 129 130 131
                self.tk.write_log("Coordinates: x = %d y = %d", x, y)
                
                segment, size_segment, idx_segment, run_time = self.segmenter.get_segment(x, y)
                
                if size_segment > 0:
                    self.tk.append_log("\nSegment = %d: %0.3f seconds", idx_segment, run_time)
                    
132
                    self._image, run_time = self.segmenter.paint_segment(self._image, self.classes[self._current_class]["color"].value, x, y)
133
                    self.tk.append_log("Painting segment: %0.3f seconds", run_time)
134
                    self.tk.refresh_image(self._image)
135
                    
136 137 138 139 140 141 142
                    if self._ground_truth == True:
                        self._gt_segments[idx_segment] = self.classes[self._current_class]["name"].value

                    elif self._dataset_generator == True:
                        filepath = f.save_class_image(segment, self.dataset, self.classes[self._current_class]["name"].value, self._image_name, idx_segment)
                        if filepath:
                            self.tk.append_log("\nSegment saved in %s", filepath)
143 144 145
        
        if imagename is None:
            imagename = self.tk.utils.ask_image_name()
146 147

        if imagename:
148 149
            self._image = f.open_image(imagename)
            self._image_name = f.get_filename(imagename)
150

151 152 153
            self.tk.write_log("Opening %s...", self._image_name)
            self.tk.add_image(self._image, self._image_name, onclick)
            self._const_image = self._image
154
            
155
            self.segmenter.reset()
156
            self._gt_segments = None
157

158
        
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
159 160 161 162 163

    def open_weight(self):
        """Open a new weight."""
        self.weight_path = self.tk.utils.ask_weight_name()
        
164
    def restore_image(self):
165 166
        """Refresh the image and clean the segmentation.
        """
167 168 169 170
        if self._const_image is not None:
            self.tk.write_log("Restoring image...")
            self.tk.refresh_image(self._const_image)
            
171
            self.segmenter.reset()
172
            self._gt_segments = None
173 174
        
    def close_image(self):
175
        """Close the image.
176
        
177 178 179 180 181
        Raises
        ------
        IException 'Image not found'
            If there's no image opened.
        """
182
        if self._const_image is None:
183 184 185 186
            raise IException("Image not found")
        
        if self.tk.close_image():
            self.tk.write_log("Closing image...")
187
            self._const_image = None
188
            self._image = None
189 190

    def add_class(self, dialog = True, name = None, color = None):
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        """Add a new class.

        Parameters
        ----------
        dialog : boolean, optional, default = True
            If true open a config dialog to add the class.
        name : string, optional, default = None
            Name of class. If not informed set the name 'Class_nn' to class.
        color : string, optional, default = None
            Name of color in X11Color format, representing the class. It will used to paint the segments of class.
            If not informed choose a color at random.
            
        Raises
        ------
        IException 'You have reached the limite of %d classes'
            If you already have created self.tk.MAX_CLASSES classes.
        """
208 209 210
        n_classes = len(self.classes)
        if n_classes >= self.tk.MAX_CLASSES:
            raise IException("You have reached the limite of %d classes" % self.tk.MAX_CLASSES)
211
                
212
        def edit_class(index):
213
            """Calls method that edit the class."""
214
            self.edit_class(index)
215 216
            
        def update_current_class(index):
217
            """Calls method that update the class."""
218
            self.update_current_class(index)
219 220
        
        def process_config():
221
            """Add the class and refresh the panel of classes."""
222
            new_class = self.tk.get_config_and_destroy()
223
            new_class["name"].value = '_'.join(new_class["name"].value.split())
224 225 226

            self.classes.append( new_class )
            self.tk.write_log("New class: %s", new_class["name"].value)
227
            self.tk.refresh_panel_classes(self.classes, self._current_class)
228
            
229 230
        if name is None:
            name = "Class_%02d" % (n_classes+1)
231
        if color is None:
232
            color = util.X11Colors.random_color()
233 234
            
        class_config = OrderedDict()
235
        class_config["name"] = Config(label="Name", value=name, c_type=str)
236
        class_config["color"] = Config(label="Color (X11 Colors)", value=color, c_type='color')
237 238
        class_config["callback"] = Config(label=None, value=update_current_class, c_type=None, hidden=True)
        class_config["callback_color"] = Config(label=None, value=edit_class, c_type=None, hidden=True)
239 240 241 242 243 244 245
        class_config["args"] = Config(label=None, value=n_classes, c_type=int, hidden=True)
        
        if dialog == False:
            self.classes.append( class_config )
            return 

        title = "Add a new classe"
246 247 248
        self.tk.dialogue_config(title, class_config, process_config)        
      

249
    def edit_class(self, index):
250 251 252 253 254 255 256
        """Edit a class.

        Parameters
        ----------
        index : integer.
            Index of class in list self.classes.
        """
257
        def process_update(index):
258
            """Update the class."""
259
            updated_class = self.tk.get_config_and_destroy()
260
            updated_class["name"].value = '_'.join(updated_class["name"].value.split())
261 262 263
            
            self.classes[index] = updated_class
            self.tk.write_log("Class updated: %s", updated_class["name"].value)
264
            self.tk.refresh_panel_classes(self.classes, self._current_class)
265 266 267 268 269 270
        
        current_config = self.classes[index]
            
        title = "Edit class %s" % current_config["name"].value
        self.tk.dialogue_config(title, current_config, lambda *_ : process_update(index))
            
271
    def update_current_class(self, index):
272 273
        """Update the current class.
        """
274
        self._current_class = index
275 276
        
    def get_class_by_name(self, name):
277 278 279 280
        """Return the index for class.
        
        Parameters
        ----------
281
        name : string
282 283 284 285
            Name of class.
            
        Returns
        -------
286
        index : integer
287 288 289 290 291 292 293
            Index of class in list self.classes.

        Raises
        ------
        Exception 'Class not found'
            If name not found in self.classes.
        """
294 295 296 297 298 299
        name = name.strip()
        
        for cl in self.classes:
            if cl["name"].value == name:
                return cl
        raise Exception("Class not found")
300

301
        
302
    def set_dataset_path(self):
303 304
        """Open a dialog to choose the path to directory of image dataset.
        """
305 306
        directory = self.tk.utils.ask_directory(default_dir = self.dataset)
        if directory:
307
            self._init_dataset(directory)
308 309
            self.tk.write_log("Image dataset defined: %s", self.dataset)
            
310
            self._init_classes()
311
            self.tk.refresh_panel_classes(self.classes)
312
            
313 314
            if self.classifier: self.classifier.reset()
            
315
    def toggle_dataset_generator(self):
316 317
        """Enable/disable the dataset generator on click in image.
        """
318
        self._dataset_generator = not self._dataset_generator
319

320 321
            
    def select_segmenter(self):
322 323
        """Open a dialog to choose the segmenter.
        """
324 325
        title = "Choosing a segmenter"
        self.tk.write_log(title)
326

327
        current_config = segmentation.get_segmenter_config()
328
        
329
        def process_config():
330
            """Update the current segmenter."""
331
            new_config = self.tk.get_config_and_destroy()
332

333 334 335
            self.segmenter = [new_config[segmenter].meta for segmenter in new_config
                                if new_config[segmenter].value == True ][0]()

336
            self.tk.append_log("\nSegmenter: %s\n%s", str(self.segmenter.get_name()), str(self.segmenter.get_summary_config()))
337 338 339 340 341
            segmentation.set_segmenter_config(new_config)

        self.tk.dialogue_choose_one(title, current_config, process_config)

    def config_segmenter(self):
342 343
        """Open a dialog to configure the current segmenter.
        """
344 345 346 347 348 349
        title = "Configuring %s" % self.segmenter.get_name()
        self.tk.write_log(title)

        current_config = self.segmenter.get_config()
        
        def process_config():
350
            """Update the configs of current segmenter."""
351 352 353
            new_config = self.tk.get_config_and_destroy()

            self.segmenter.set_config(new_config)
354
            self.tk.append_log("\nConfig updated:\n%s", str(self.segmenter.get_summary_config()))
355
            self.segmenter.reset()
356 357

        self.tk.dialogue_config(title, current_config, process_config)
358 359
        
    def run_segmenter(self):
360
        """Do the segmentation of image, using the current segmenter.
361
        
362 363 364 365 366
        Raises
        ------
        IException 'Image not found'
            If there's no image opened.
        """
367 368 369
        if self._const_image is None:
            raise IException("Image not found")
        
370
        self.tk.write_log("Running %s...", self.segmenter.get_name())
371 372 373 374 375

        self.tk.append_log("\nConfig: %s", str(self.segmenter.get_summary_config()))
        self._image, run_time = self.segmenter.run(self._const_image)
        self.tk.append_log("Time elapsed: %0.3f seconds", run_time)
        
376 377
        self._gt_segments = [None]*(max(self.segmenter.get_list_segments())+1)
        
378
        self.tk.refresh_image(self._image)
379 380


381
    def select_extractors(self):
382
        """Open a dialog to select the collection of extractors.
383
        
384 385 386 387 388
        Raises
        ------
        IException 'Please select at least one extractor'
            If no extractor was selected.
        """
389 390 391 392 393 394
        title = "Selecting extractors"
        self.tk.write_log(title)

        current_config = extraction.get_extractor_config()
        
        def process_config():
395
            """Update the collection of extractors."""
396 397 398 399
            new_config = self.tk.get_config_and_destroy()

            self.extractors = [new_config[extractor].meta for extractor in new_config
                                if new_config[extractor].value == True ]
400 401 402
                                
            if len(self.extractors) == 0:
                raise IException("Please select at least one extractor")
403 404 405 406 407 408 409

            self.tk.append_log("\nConfig updated:\n%s", 
                                '\n'.join(["%s: %s" % (new_config[extractor].label, "on" if new_config[extractor].value==True else "off")
                                            for extractor in new_config]))
            extraction.set_extractor_config(new_config)

        self.tk.dialogue_select(title, current_config, process_config)
410 411
        
    def run_extractors(self):
412 413
        """Perform a feature extraction on all images of dataset, using the current collection of extractors.
        """
414
        self.tk.write_log("Running extractors on all images in %s", self.dataset)
415

416 417 418
        fextractor = FeatureExtractor(self.extractors)
        self.tk.append_log("%s", '\n'.join([extraction._extractor_list[extractor].label for extractor in extraction._extractor_list
                                                if extraction._extractor_list[extractor].value == True ]))
419
        
420
        output_file, run_time = fextractor.extract_all(self.dataset, "training")
421 422
        self.tk.append_log("\nOutput file saved in %s", output_file)
        self.tk.append_log("Time elapsed: %0.3f seconds", run_time)
423 424
        
        if self.classifier: self.classifier.reset()
425

426 427
        
    def select_classifier(self):
428 429 430 431 432 433 434
        """Open a dialog to select the classifier.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
435
        if self.classifier is None:
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
436
            raise IException("Classifier not found!")
437 438 439 440 441 442 443
        
        title = "Choosing a classifier"
        self.tk.write_log(title)

        current_config = classification.get_classifier_config()
        
        def process_config():
444
            """Update the current classifier."""
445 446 447 448 449 450 451 452 453 454 455
            new_config = self.tk.get_config_and_destroy()

            self.classifier = [new_config[classifier].meta for classifier in new_config
                                if new_config[classifier].value == True ][0]()

            self.tk.append_log("\nClassifier: %s\n%s", str(self.classifier.get_name()), str(self.classifier.get_summary_config()))
            classification.set_classifier_config(new_config)

        self.tk.dialogue_choose_one(title, current_config, process_config)
        
    def configure_classifier(self):
456 457 458 459 460 461 462
        """Set the configuration of current classifier.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
463
        if self.classifier is None:
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
464
            raise IException("Classifier not found!")
465 466 467 468 469 470 471 472 473 474 475
        
        title = "Configuring %s" % self.classifier.get_name()
        self.tk.write_log(title)

        current_config = self.classifier.get_config()
        
        def process_config():
            new_config = self.tk.get_config_and_destroy()

            self.classifier.set_config(new_config)
            self.tk.append_log("\nConfig updated:\n%s", str(self.classifier.get_summary_config()))
476 477
            
            if self.classifier: self.classifier.reset()
478 479 480 481 482

        self.tk.dialogue_config(title, current_config, process_config)
    
    
    def run_classifier(self):
483 484 485 486 487 488 489 490 491 492
        """Run the classifier on the current image.
        As result, paint the image with color corresponding to predicted class of all segment.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        IException 'Image not found'
            If there's no image opened.
        """
493
        if self.classifier is None:
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
494
            raise IException("Classifier not found!")
495 496 497 498 499 500 501 502 503
        
        if self._const_image is None:
            raise IException("Image not found")
        
        self.tk.write_log("Running %s...", self.classifier.get_name())
        self.tk.append_log("\n%s", str(self.classifier.get_summary_config()))
        
        start_time = TimeUtils.get_time()

504
        # Perform a segmentation, if needed.
505 506 507 508 509 510 511
        list_segments = self.segmenter.get_list_segments()
        if len(list_segments) == 0:
            self.tk.append_log("Running %s... (%0.3f seconds)", self.segmenter.get_name(), (TimeUtils.get_time() - start_time))
            
            self._image, _ = self.segmenter.run(self._const_image)
            self.tk.refresh_image(self._image)        
            list_segments = self.segmenter.get_list_segments()
512
            self._gt_segments = [None]*(max(list_segments)+1)
513 514
        
        #  New and optimized classification
515 516
        tmp = ".tmp"
        f.remove_dir(f.make_path(self.dataset, tmp))
517

518 519 520 521 522
        self.tk.append_log("Generating test images... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
        
        len_segments = {}
        for idx_segment in list_segments:
            segment, size_segment, idx_segment = self.segmenter.get_segment(self, idx_segment=idx_segment)[:-1]
523
            
524 525
            filepath = f.save_class_image(segment, self.dataset, tmp, self._image_name, idx_segment)
            len_segments[idx_segment] = size_segment
526
            
527
        # Perform the feature extraction of all segments in image ( not applied to ConvNets ).
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
528 529
        if self.classifier.must_extract_features():
            self.tk.append_log("Running extractors on test images... (%0.3f seconds)", (TimeUtils.get_time() - start_time))            
530 531 532
            output_file, _ = fextractor.extract_all(self.dataset, "test", dirs=[tmp])
                
        self.tk.append_log("Running classifier on test data... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
533 534

        # Get the label corresponding to predict class for each segment of image.
535
        labels = self.classifier.classify(self.dataset, test_dir=tmp, test_data="test.arff")
536 537 538 539
        f.remove_dir(f.make_path(self.dataset, tmp))
        
        self.tk.append_log("Painting segments... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
        
540 541 542
        # If ground truth mode, show alternative results
        if self._ground_truth == True:
            return self._show_ground_truth(list_segments, len_segments, labels, start_time)
543

544
        # Create a popup with results of classification.
545 546 547 548 549
        popup_info = "%s\n" % str(self.classifier.get_summary_config())
        
        len_total = sum([len_segments[idx] for idx in len_segments])
        popup_info += "%-16s%-16s%0.2f%%\n" % ("Total", str(len_total), (len_total*100.0)/len_total)
        
550
        # Paint the image.
551 552 553 554 555 556 557 558 559 560 561 562
        for cl in self.classes:
            idx_segment = [ list_segments[idx] for idx in range(0, len(labels)) if cl["name"].value == labels[idx]]
            if len(idx_segment) > 0:
                self._image, _ = self.segmenter.paint_segment(self._image, cl["color"].value, idx_segment=idx_segment, border=False)
              
            len_classes = sum([len_segments[idx] for idx in idx_segment])
            popup_info += "%-16s%-16s%0.2f%%\n" % (cl["name"].value, str(len_classes), (len_classes*100.0)/len_total)

        self.tk.refresh_image(self._image)
        self.tk.popup(popup_info)

        
563 564 565 566
        end_time = TimeUtils.get_time()
            
        self.tk.append_log("\nClassification finished")
        self.tk.append_log("Time elapsed: %0.3f seconds", (end_time - start_time))
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
567 568 569

    def run_training(self):
        start_time = TimeUtils.get_time()
570
        
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
        if self._const_image is None:
            raise IException("Image not found")
        
        if self.classifier.must_train():
            
            if self.classifier.must_extract_features():
                self.tk.append_log("Creating training data... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
                fextractor = FeatureExtractor(self.extractors)
                output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
        
            self.tk.append_log("Training classifier...")
            
            self.thread.start_new_thread(self.classifier.train, (self.dataset, "training"))

            self.tk.append_log("DONE (%0.3f seconds)",  (TimeUtils.get_time() - start_time))
        
        self._image = self._const_image

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
    
    def _show_ground_truth(self, list_segments, len_segments, labels, start_time):
        """Paint only wrong classified segments and show ground truth confusion matrix.
        
        Parameters
        ----------
        list_segments : list of integer
            List of index segments.
        len_segments : list of integer
            List of segments sizes.
        labels : list of string
            List of predicted class name for each segment.
        start_time : floating point
            Start time of classification.
        """
        classes = list(set(labels))
        classes.sort()
        
        n_segments = len(labels)
        spx_matrix = np.zeros((len(classes), len(classes)), np.int) 
        px_matrix = np.zeros((len(classes), len(classes)), np.int) 

        # Create the confusion matrix and paint wrong classified segments individually.
        for idx_segment in list_segments:
            if self._gt_segments[idx_segment] is not None:
                gt_class = classes.index(self._gt_segments[idx_segment])
                predicted_class = classes.index(labels[idx_segment])
                
                spx_matrix[ gt_class ][ predicted_class ] += 1
                px_matrix[ gt_class ][ predicted_class ] += len_segments[idx_segment]
        
                if gt_class != predicted_class:
                    self._image, _ = self.segmenter.paint_segment(self._image, self.get_class_by_name(labels[idx_segment])["color"].value, idx_segment=[idx_segment], border=False)
        
        # Create a popup with results of classification.
        popup_info = "%s\n" % str(self.classifier.get_summary_config())
        popup_info += Classifier.confusion_matrix(classes, spx_matrix, "Superpixels")
        popup_info += Classifier.confusion_matrix(classes, px_matrix, "PixelSum")
        
        self.tk.refresh_image(self._image)
        self.tk.popup(popup_info)
630

631 632 633 634 635
        end_time = TimeUtils.get_time()
            
        self.tk.append_log("\nClassification finished")
        self.tk.append_log("Time elapsed: %0.3f seconds", (end_time - start_time))
        
636

637 638 639 640 641
    def toggle_ground_truth(self):
        """Enable/disable ground truth mode.
        """
        self._ground_truth = not self._ground_truth
        
642
    def cross_validation(self):
643 644 645 646 647 648 649
        """Run a cross validation on all generated segments in image dataset.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
650
        if self.classifier is None:
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
651
            raise IException("Classifier not found!")
652 653 654 655 656 657 658 659 660 661 662 663 664 665
        
        if self.classifier.must_train():
            self.tk.write_log("Creating training data...")
            
            fextractor = FeatureExtractor(self.extractors)
            output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
            self.classifier.train(self.dataset, "training")
        
        self.tk.write_log("Running Cross Validation on %s...", self.classifier.get_name())
        self.tk.append_log("\n%s", str(self.classifier.get_summary_config()))
        
        popup_info = self.classifier.cross_validate()
        self.tk.append_log("Cross Validation finished")
        self.tk.popup(popup_info)
666 667
        
    def experimenter_all(self):
668 669 670 671 672 673 674
        """Perform a test in all availabel classifiers e show the results.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
675
        if self.classifier is None:
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
676
            raise IException("Classifier not found!")
677 678 679 680 681 682 683 684 685 686 687 688 689 690
        
        if self.tk.ask_ok_cancel("Experimenter All", "This may take several minutes to complete. Are you sure?"):
            if self.classifier.must_train():
                self.tk.write_log("Creating training data...")
                
                fextractor = FeatureExtractor(self.extractors)
                output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
                self.classifier.train(self.dataset, "training")
                
            self.tk.write_log("Running Experimenter All on %s...", self.classifier.get_name())
            
            popup_info = self.classifier.experimenter()
            self.tk.append_log("\nExperimenter All finished")
            self.tk.popup(popup_info)
691 692


693 694 695 696
    def about(self):
        self.tk.show_info("Pynovisao\n\nVersion 1.0.0\n\nAuthors:\nAlessandro Ferreira\nHemerson Pistori")
        
            
697
    def func_not_available(self):
698
        """Use this method to bind menu options not available."""
699
        self.tk.write_log("This functionality is not available right now.")
700