pynovisao.py 26.9 KB
Newer Older
1 2 3 4
#!/usr/bin/python
# -*- coding: utf-8 -*-
#
"""
5 6 7 8
    This file must contain the implementation code for all actions of pynovisao.
    
    Name: pynovisao.py
    Author: Alessandro dos Santos Ferreira ( santosferreira.alessandro@gmail.com )
9 10 11
"""

from collections import OrderedDict
12
import numpy as np
13

14 15
import interface
from interface.interface import InterfaceException as IException
16

17
import segmentation
18
import extraction
19
from extraction import FeatureExtractor
20
import classification
21
from classification import Classifier
22

23 24 25
import util
from util.config import Config
from util.file_utils import File as f
26
from util.utils import TimeUtils
27 28

class Act(object):
29
    """Store all actions of Pynovisao."""
30 31

    def __init__(self, tk, args):
32 33 34 35 36 37 38 39 40
        """Constructor.

        Parameters
        ----------
        tk : Interface
            Pointer to interface that handles UI.
        args : Dictionary
            Arguments of program.
        """
41
        self.tk = tk
42 43 44
        
        self.segmenter = [segmentation._segmenter_list[segmenter].meta for segmenter in segmentation._segmenter_list
                            if segmentation._segmenter_list[segmenter].value == True ][0]()
45 46 47
        
        self.extractors = [extraction._extractor_list[extractor].meta for extractor in extraction._extractor_list
                            if extraction._extractor_list[extractor].value == True ]
48 49 50 51 52 53
        
        try:
            self.classifier = [classification._classifier_list[classifier].meta for classifier in classification._classifier_list
                                if classification._classifier_list[classifier].value == True ][0]()
        except:
            self.classifier = None
54

55 56 57
        self._image = None
        self._const_image = None
        self._image_name = None
58
        self._image_path = None
59
                    
60 61
        self._init_dataset(args["dataset"])
        self._init_classes(args["classes"], args["colors"])
62 63
        
        self._dataset_generator = True
64 65
        self._ground_truth = False
        self._gt_segments = None
66

67
    
68
    def _init_dataset(self, directory):
69 70 71 72 73 74 75
        """Initialize the directory of image dataset.

        Parameters
        ----------
        directory : string
            Path to directory.
        """
76 77 78 79 80
        if(directory[-1] == '/'):
            directory = directory[:-1]
            
        self.dataset = directory
        f.create_dir(self.dataset)
81
    
82
    def _init_classes(self, classes = None, colors = None):
83 84 85 86 87 88 89 90 91 92
        """Initialize the classes of dataset.

        Parameters
        ----------
        classes : list of string, optional, default = None
            List of classes. If not informed, the metod set as classes all classes in dataset. 
            If there's no classes in dataset, adds two default classes.
        colors : list of string, optional, default = None
            List de colors representing the color of classe, in same order. If not informed, chooses a color at random.
        """
93 94 95 96 97 98 99 100 101 102 103 104
        self.classes = []
        
        classes = sorted(f.list_dirs(self.dataset)) if classes is None else classes.split()
        colors = [] if colors is None else colors.split()

        if(len(classes) > 0):
            for i in range(0, len(classes)):
                self.add_class(dialog = False, name=classes[i], color=colors[i] if i < len(colors) else None)
        else:
            self.add_class(dialog = False, color='Green')
            self.add_class(dialog = False, color='Yellow')
            
105
        self._current_class = 0
106
        
107

108
    def open_image(self, imagename = None):
109 110 111 112 113 114 115
        """Open a new image.

        Parameters
        ----------
        imagename : string, optional, default = None
            Filepath of image. If not informed open a dialog to choose.
        """
116 117
        
        def onclick(event):
118
            """Binds dataset generator event to click on image."""
119
            if event.xdata != None and event.ydata != None and int(event.ydata) != 0 and self._dataset_generator == True:
120 121
                x = int(event.xdata)
                y = int(event.ydata)
122 123 124 125 126 127 128
                self.tk.write_log("Coordinates: x = %d y = %d", x, y)
                
                segment, size_segment, idx_segment, run_time = self.segmenter.get_segment(x, y)
                
                if size_segment > 0:
                    self.tk.append_log("\nSegment = %d: %0.3f seconds", idx_segment, run_time)
                    
129
                    self._image, run_time = self.segmenter.paint_segment(self._image, self.classes[self._current_class]["color"].value, x, y)
130
                    self.tk.append_log("Painting segment: %0.3f seconds", run_time)
131
                    self.tk.refresh_image(self._image)
132
                    
133 134 135 136 137 138 139
                    if self._ground_truth == True:
                        self._gt_segments[idx_segment] = self.classes[self._current_class]["name"].value

                    elif self._dataset_generator == True:
                        filepath = f.save_class_image(segment, self.dataset, self.classes[self._current_class]["name"].value, self._image_name, idx_segment)
                        if filepath:
                            self.tk.append_log("\nSegment saved in %s", filepath)
140 141 142
        
        if imagename is None:
            imagename = self.tk.utils.ask_image_name()
143 144

        if imagename:
145 146
            self._image = f.open_image(imagename)
            self._image_name = f.get_filename(imagename)
147

148 149 150
            self.tk.write_log("Opening %s...", self._image_name)
            self.tk.add_image(self._image, self._image_name, onclick)
            self._const_image = self._image
151
            
152
            self.segmenter.reset()
153
            self._gt_segments = None
154
                 
155
    def restore_image(self):
156 157
        """Refresh the image and clean the segmentation.
        """
158 159 160 161
        if self._const_image is not None:
            self.tk.write_log("Restoring image...")
            self.tk.refresh_image(self._const_image)
            
162
            self.segmenter.reset()
163
            self._gt_segments = None
164 165
        
    def close_image(self):
166
        """Close the image.
167
        
168 169 170 171 172
        Raises
        ------
        IException 'Image not found'
            If there's no image opened.
        """
173
        if self._const_image is None:
174 175 176 177
            raise IException("Image not found")
        
        if self.tk.close_image():
            self.tk.write_log("Closing image...")
178
            self._const_image = None
179
            self._image = None
180
            self._image_path = None
181 182

    def add_class(self, dialog = True, name = None, color = None):
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        """Add a new class.

        Parameters
        ----------
        dialog : boolean, optional, default = True
            If true open a config dialog to add the class.
        name : string, optional, default = None
            Name of class. If not informed set the name 'Class_nn' to class.
        color : string, optional, default = None
            Name of color in X11Color format, representing the class. It will used to paint the segments of class.
            If not informed choose a color at random.
            
        Raises
        ------
        IException 'You have reached the limite of %d classes'
            If you already have created self.tk.MAX_CLASSES classes.
        """
200 201 202
        n_classes = len(self.classes)
        if n_classes >= self.tk.MAX_CLASSES:
            raise IException("You have reached the limite of %d classes" % self.tk.MAX_CLASSES)
203
                
204
        def edit_class(index):
205
            """Calls method that edit the class."""
206
            self.edit_class(index)
207 208
            
        def update_current_class(index):
209
            """Calls method that update the class."""
210
            self.update_current_class(index)
211 212
        
        def process_config():
213
            """Add the class and refresh the panel of classes."""
214
            new_class = self.tk.get_config_and_destroy()
215
            new_class["name"].value = '_'.join(new_class["name"].value.split())
216 217 218

            self.classes.append( new_class )
            self.tk.write_log("New class: %s", new_class["name"].value)
219
            self.tk.refresh_panel_classes(self.classes, self._current_class)
220
            
221 222
        if name is None:
            name = "Class_%02d" % (n_classes+1)
223
        if color is None:
224
            color = util.X11Colors.random_color()
225 226
            
        class_config = OrderedDict()
227
        class_config["name"] = Config(label="Name", value=name, c_type=str)
228
        class_config["color"] = Config(label="Color (X11 Colors)", value=color, c_type='color')
229 230
        class_config["callback"] = Config(label=None, value=update_current_class, c_type=None, hidden=True)
        class_config["callback_color"] = Config(label=None, value=edit_class, c_type=None, hidden=True)
231 232 233 234 235 236 237
        class_config["args"] = Config(label=None, value=n_classes, c_type=int, hidden=True)
        
        if dialog == False:
            self.classes.append( class_config )
            return 

        title = "Add a new classe"
238 239 240
        self.tk.dialogue_config(title, class_config, process_config)        
      

241
    def edit_class(self, index):
242 243 244 245 246 247 248
        """Edit a class.

        Parameters
        ----------
        index : integer.
            Index of class in list self.classes.
        """
249
        def process_update(index):
250
            """Update the class."""
251
            updated_class = self.tk.get_config_and_destroy()
252
            updated_class["name"].value = '_'.join(updated_class["name"].value.split())
253 254 255
            
            self.classes[index] = updated_class
            self.tk.write_log("Class updated: %s", updated_class["name"].value)
256
            self.tk.refresh_panel_classes(self.classes, self._current_class)
257 258 259 260 261 262
        
        current_config = self.classes[index]
            
        title = "Edit class %s" % current_config["name"].value
        self.tk.dialogue_config(title, current_config, lambda *_ : process_update(index))
            
263
    def update_current_class(self, index):
264 265
        """Update the current class.
        """
266
        self._current_class = index
267 268
        
    def get_class_by_name(self, name):
269 270 271 272
        """Return the index for class.
        
        Parameters
        ----------
273
        name : string
274 275 276 277
            Name of class.
            
        Returns
        -------
278
        index : integer
279 280 281 282 283 284 285
            Index of class in list self.classes.

        Raises
        ------
        Exception 'Class not found'
            If name not found in self.classes.
        """
286 287 288 289 290 291
        name = name.strip()
        
        for cl in self.classes:
            if cl["name"].value == name:
                return cl
        raise Exception("Class not found")
292

293
        
294
    def set_dataset_path(self):
295 296
        """Open a dialog to choose the path to directory of image dataset.
        """
297 298
        directory = self.tk.utils.ask_directory(default_dir = self.dataset)
        if directory:
299
            self._init_dataset(directory)
300 301
            self.tk.write_log("Image dataset defined: %s", self.dataset)
            
302
            self._init_classes()
303
            self.tk.refresh_panel_classes(self.classes)
304
            
305 306
            if self.classifier: self.classifier.reset()
            
307
    def toggle_dataset_generator(self):
308 309
        """Enable/disable the dataset generator on click in image.
        """
310
        self._dataset_generator = not self._dataset_generator
311

312 313
            
    def select_segmenter(self):
314 315
        """Open a dialog to choose the segmenter.
        """
316 317
        title = "Choosing a segmenter"
        self.tk.write_log(title)
318

319
        current_config = segmentation.get_segmenter_config()
320
        
321
        def process_config():
322
            """Update the current segmenter."""
323
            new_config = self.tk.get_config_and_destroy()
324

325 326 327
            self.segmenter = [new_config[segmenter].meta for segmenter in new_config
                                if new_config[segmenter].value == True ][0]()

328
            self.tk.append_log("\nSegmenter: %s\n%s", str(self.segmenter.get_name()), str(self.segmenter.get_summary_config()))
329 330 331 332 333
            segmentation.set_segmenter_config(new_config)

        self.tk.dialogue_choose_one(title, current_config, process_config)

    def config_segmenter(self):
334 335
        """Open a dialog to configure the current segmenter.
        """
336 337 338 339 340 341
        title = "Configuring %s" % self.segmenter.get_name()
        self.tk.write_log(title)

        current_config = self.segmenter.get_config()
        
        def process_config():
342
            """Update the configs of current segmenter."""
343 344 345
            new_config = self.tk.get_config_and_destroy()

            self.segmenter.set_config(new_config)
346
            self.tk.append_log("\nConfig updated:\n%s", str(self.segmenter.get_summary_config()))
347
            self.segmenter.reset()
348 349

        self.tk.dialogue_config(title, current_config, process_config)
350 351
        
    def run_segmenter(self):
352
        """Do the segmentation of image, using the current segmenter.
353
        
354 355 356 357 358
        Raises
        ------
        IException 'Image not found'
            If there's no image opened.
        """
359 360 361
        if self._const_image is None:
            raise IException("Image not found")
        
362
        self.tk.write_log("Running %s...", self.segmenter.get_name())
363 364 365 366 367

        self.tk.append_log("\nConfig: %s", str(self.segmenter.get_summary_config()))
        self._image, run_time = self.segmenter.run(self._const_image)
        self.tk.append_log("Time elapsed: %0.3f seconds", run_time)
        
368 369
        self._gt_segments = [None]*(max(self.segmenter.get_list_segments())+1)
        
370
        self.tk.refresh_image(self._image)
371 372


373
    def select_extractors(self):
374
        """Open a dialog to select the collection of extractors.
375
        
376 377 378 379 380
        Raises
        ------
        IException 'Please select at least one extractor'
            If no extractor was selected.
        """
381 382 383 384 385 386
        title = "Selecting extractors"
        self.tk.write_log(title)

        current_config = extraction.get_extractor_config()
        
        def process_config():
387
            """Update the collection of extractors."""
388 389 390 391
            new_config = self.tk.get_config_and_destroy()

            self.extractors = [new_config[extractor].meta for extractor in new_config
                                if new_config[extractor].value == True ]
392 393 394
                                
            if len(self.extractors) == 0:
                raise IException("Please select at least one extractor")
395 396 397 398 399 400 401

            self.tk.append_log("\nConfig updated:\n%s", 
                                '\n'.join(["%s: %s" % (new_config[extractor].label, "on" if new_config[extractor].value==True else "off")
                                            for extractor in new_config]))
            extraction.set_extractor_config(new_config)

        self.tk.dialogue_select(title, current_config, process_config)
402 403
        
    def run_extractors(self):
404 405
        """Perform a feature extraction on all images of dataset, using the current collection of extractors.
        """
406
        self.tk.write_log("Running extractors on all images in %s", self.dataset)
407

408 409 410
        fextractor = FeatureExtractor(self.extractors)
        self.tk.append_log("%s", '\n'.join([extraction._extractor_list[extractor].label for extractor in extraction._extractor_list
                                                if extraction._extractor_list[extractor].value == True ]))
411
        
412
        output_file, run_time = fextractor.extract_all(self.dataset, "training")
413 414
        self.tk.append_log("\nOutput file saved in %s", output_file)
        self.tk.append_log("Time elapsed: %0.3f seconds", run_time)
415 416
        
        if self.classifier: self.classifier.reset()
417

418 419
        
    def select_classifier(self):
420 421 422 423 424 425 426
        """Open a dialog to select the classifier.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
427 428 429 430 431 432 433 434 435
        if self.classifier is None:
            raise IException("You must install python-weka-wrapper")
        
        title = "Choosing a classifier"
        self.tk.write_log(title)

        current_config = classification.get_classifier_config()
        
        def process_config():
436
            """Update the current classifier."""
437 438 439 440 441 442 443 444 445 446 447
            new_config = self.tk.get_config_and_destroy()

            self.classifier = [new_config[classifier].meta for classifier in new_config
                                if new_config[classifier].value == True ][0]()

            self.tk.append_log("\nClassifier: %s\n%s", str(self.classifier.get_name()), str(self.classifier.get_summary_config()))
            classification.set_classifier_config(new_config)

        self.tk.dialogue_choose_one(title, current_config, process_config)
        
    def configure_classifier(self):
448 449 450 451 452 453 454
        """Set the configuration of current classifier.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
455 456 457 458 459 460 461 462 463 464 465 466 467
        if self.classifier is None:
            raise IException("You must install python-weka-wrapper")
        
        title = "Configuring %s" % self.classifier.get_name()
        self.tk.write_log(title)

        current_config = self.classifier.get_config()
        
        def process_config():
            new_config = self.tk.get_config_and_destroy()

            self.classifier.set_config(new_config)
            self.tk.append_log("\nConfig updated:\n%s", str(self.classifier.get_summary_config()))
468 469
            
            if self.classifier: self.classifier.reset()
470 471 472 473 474

        self.tk.dialogue_config(title, current_config, process_config)
    
    
    def run_classifier(self):
475 476 477 478 479 480 481 482 483 484
        """Run the classifier on the current image.
        As result, paint the image with color corresponding to predicted class of all segment.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        IException 'Image not found'
            If there's no image opened.
        """
485 486 487 488 489 490 491 492 493
        if self.classifier is None:
            raise IException("You must install python-weka-wrapper")
        
        if self._const_image is None:
            raise IException("Image not found")
        
        self.tk.write_log("Running %s...", self.classifier.get_name())
        self.tk.append_log("\n%s", str(self.classifier.get_summary_config()))
        
494 495
        #self.classifier.set
        
496 497
        start_time = TimeUtils.get_time()

498
        # Perform a segmentation, if needed.
499 500 501 502 503 504 505
        list_segments = self.segmenter.get_list_segments()
        if len(list_segments) == 0:
            self.tk.append_log("Running %s... (%0.3f seconds)", self.segmenter.get_name(), (TimeUtils.get_time() - start_time))
            
            self._image, _ = self.segmenter.run(self._const_image)
            self.tk.refresh_image(self._image)        
            list_segments = self.segmenter.get_list_segments()
506
            self._gt_segments = [None]*(max(list_segments)+1)
507
        
508
        # Train the classifier ( this program does not perform the training of ConvNets ).
509
        if self.classifier.must_train():
510
            self.tk.append_log("Creating training data... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
511 512
            
            fextractor = FeatureExtractor(self.extractors)
513
            output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
514 515 516
        
            self.tk.append_log("Training classifier... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
            
517
            self.classifier.train(self.dataset, "training")
518 519 520
        
        self._image = self._const_image

521
        
522
        #  New and optimized classification
523 524
        tmp = ".tmp"
        f.remove_dir(f.make_path(self.dataset, tmp))
525

526 527 528 529 530
        self.tk.append_log("Generating test images... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
        
        len_segments = {}
        for idx_segment in list_segments:
            segment, size_segment, idx_segment = self.segmenter.get_segment(self, idx_segment=idx_segment)[:-1]
531
            
532 533
            filepath = f.save_class_image(segment, self.dataset, tmp, self._image_name, idx_segment)
            len_segments[idx_segment] = size_segment
534
            
535
        # Perform the feature extraction of all segments in image ( not applied to ConvNets ).
536 537
        if self.classifier.must_train():
            self.tk.append_log("Running extractors on test images... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
538
            
539 540 541
            output_file, _ = fextractor.extract_all(self.dataset, "test", dirs=[tmp])
                
        self.tk.append_log("Running classifier on test data... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
542 543

        # Get the label corresponding to predict class for each segment of image.
544
        labels = self.classifier.classify(self.dataset, test_dir=tmp, test_data="test.arff")
545 546 547 548
        f.remove_dir(f.make_path(self.dataset, tmp))
        
        self.tk.append_log("Painting segments... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
        
549 550 551
        # If ground truth mode, show alternative results
        if self._ground_truth == True:
            return self._show_ground_truth(list_segments, len_segments, labels, start_time)
552

553
        # Create a popup with results of classification.
554 555 556 557 558
        popup_info = "%s\n" % str(self.classifier.get_summary_config())
        
        len_total = sum([len_segments[idx] for idx in len_segments])
        popup_info += "%-16s%-16s%0.2f%%\n" % ("Total", str(len_total), (len_total*100.0)/len_total)
        
559
        # Paint the image.
560 561 562 563 564 565 566 567 568 569 570 571
        for cl in self.classes:
            idx_segment = [ list_segments[idx] for idx in range(0, len(labels)) if cl["name"].value == labels[idx]]
            if len(idx_segment) > 0:
                self._image, _ = self.segmenter.paint_segment(self._image, cl["color"].value, idx_segment=idx_segment, border=False)
              
            len_classes = sum([len_segments[idx] for idx in idx_segment])
            popup_info += "%-16s%-16s%0.2f%%\n" % (cl["name"].value, str(len_classes), (len_classes*100.0)/len_total)

        self.tk.refresh_image(self._image)
        self.tk.popup(popup_info)

        
572 573 574 575
        end_time = TimeUtils.get_time()
            
        self.tk.append_log("\nClassification finished")
        self.tk.append_log("Time elapsed: %0.3f seconds", (end_time - start_time))
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
        
    
    def _show_ground_truth(self, list_segments, len_segments, labels, start_time):
        """Paint only wrong classified segments and show ground truth confusion matrix.
        
        Parameters
        ----------
        list_segments : list of integer
            List of index segments.
        len_segments : list of integer
            List of segments sizes.
        labels : list of string
            List of predicted class name for each segment.
        start_time : floating point
            Start time of classification.
        """
        classes = list(set(labels))
        classes.sort()
        
        n_segments = len(labels)
        spx_matrix = np.zeros((len(classes), len(classes)), np.int) 
        px_matrix = np.zeros((len(classes), len(classes)), np.int) 

        # Create the confusion matrix and paint wrong classified segments individually.
        for idx_segment in list_segments:
            if self._gt_segments[idx_segment] is not None:
                gt_class = classes.index(self._gt_segments[idx_segment])
                predicted_class = classes.index(labels[idx_segment])
                
                spx_matrix[ gt_class ][ predicted_class ] += 1
                px_matrix[ gt_class ][ predicted_class ] += len_segments[idx_segment]
        
                if gt_class != predicted_class:
                    self._image, _ = self.segmenter.paint_segment(self._image, self.get_class_by_name(labels[idx_segment])["color"].value, idx_segment=[idx_segment], border=False)
        
        # Create a popup with results of classification.
        popup_info = "%s\n" % str(self.classifier.get_summary_config())
        popup_info += Classifier.confusion_matrix(classes, spx_matrix, "Superpixels")
        popup_info += Classifier.confusion_matrix(classes, px_matrix, "PixelSum")
        
        self.tk.refresh_image(self._image)
        self.tk.popup(popup_info)
618

619 620 621 622 623
        end_time = TimeUtils.get_time()
            
        self.tk.append_log("\nClassification finished")
        self.tk.append_log("Time elapsed: %0.3f seconds", (end_time - start_time))
        
624

625 626 627 628 629
    def toggle_ground_truth(self):
        """Enable/disable ground truth mode.
        """
        self._ground_truth = not self._ground_truth
        
630
    def cross_validation(self):
631 632 633 634 635 636 637
        """Run a cross validation on all generated segments in image dataset.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
        if self.classifier is None:
            raise IException("You must install python-weka-wrapper")
        
        if self.classifier.must_train():
            self.tk.write_log("Creating training data...")
            
            fextractor = FeatureExtractor(self.extractors)
            output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
            self.classifier.train(self.dataset, "training")
        
        self.tk.write_log("Running Cross Validation on %s...", self.classifier.get_name())
        self.tk.append_log("\n%s", str(self.classifier.get_summary_config()))
        
        popup_info = self.classifier.cross_validate()
        self.tk.append_log("Cross Validation finished")
        self.tk.popup(popup_info)
654 655
        
    def experimenter_all(self):
656 657 658 659 660 661 662
        """Perform a test in all availabel classifiers e show the results.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
        if self.classifier is None:
            raise IException("You must install python-weka-wrapper")
        
        if self.tk.ask_ok_cancel("Experimenter All", "This may take several minutes to complete. Are you sure?"):
            if self.classifier.must_train():
                self.tk.write_log("Creating training data...")
                
                fextractor = FeatureExtractor(self.extractors)
                output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
                self.classifier.train(self.dataset, "training")
                
            self.tk.write_log("Running Experimenter All on %s...", self.classifier.get_name())
            
            popup_info = self.classifier.experimenter()
            self.tk.append_log("\nExperimenter All finished")
            self.tk.popup(popup_info)
679 680


681 682 683 684
    def about(self):
        self.tk.show_info("Pynovisao\n\nVersion 1.0.0\n\nAuthors:\nAlessandro Ferreira\nHemerson Pistori")
        
            
685
    def func_not_available(self):
686
        """Use this method to bind menu options not available."""
687
        self.tk.write_log("This functionality is not available right now.")
688