pynovisao.py 42.9 KB
Newer Older
1 2
#
"""
3 4 5 6
    This file must contain the implementation code for all actions of pynovisao.
    
    Name: pynovisao.py
    Author: Alessandro dos Santos Ferreira ( santosferreira.alessandro@gmail.com )
7
"""
8
import gc
9
from collections import OrderedDict
10
import numpy as np
11
import os
12
import interface
13 14
import types
import cv2
15
from interface.interface import InterfaceException as IException
16
from PIL import Image
17

18
import segmentation
19
import extraction
20
from extraction import FeatureExtractor
21

22
import classification
23
from classification import Classifier
24

25
import util
26 27
from extraction.extractor_frame_video import ExtractFM

28
from util.config import Config
29
from util.file_utils import File
30
from util.utils import TimeUtils
31 32
from util.utils import MetricUtils
from util.x11_colors import X11Colors
33 34 35 36
import multiprocessing
from multiprocessing import Process, Manager
import  threading
from tqdm import tqdm
37
class Act(object):
38
    """Store all actions of Pynovisao."""
39

Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
40
    def __init__(self, tk, args):
41 42 43 44 45 46 47 48 49
        """Constructor.

        Parameters
        ----------
        tk : Interface
            Pointer to interface that handles UI.
        args : Dictionary
            Arguments of program.
        """
50
        self.tk = tk
51
        self.has_trained = False
52 53 54
        
        self.segmenter = [segmentation._segmenter_list[segmenter].meta for segmenter in segmentation._segmenter_list
                            if segmentation._segmenter_list[segmenter].value == True ][0]()
55 56 57
        
        self.extractors = [extraction._extractor_list[extractor].meta for extractor in extraction._extractor_list
                            if extraction._extractor_list[extractor].value == True ]
58 59 60 61 62 63
        
        try:
            self.classifier = [classification._classifier_list[classifier].meta for classifier in classification._classifier_list
                                if classification._classifier_list[classifier].value == True ][0]()
        except:
            self.classifier = None
64

65 66
        self._image = None
        self._const_image = None
67
        self._mask_image = None
68
        self._image_name = None
69
        self._image_path = None
70
                    
71 72
        self._init_dataset(args["dataset"])
        self._init_classes(args["classes"], args["colors"])
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
73

74
        self._dataset_generator = True
75 76
        self._ground_truth = False
        self._gt_segments = None
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
77
        self.weight_path = None
78

79
    
80
    def _init_dataset(self, directory):
81 82 83 84 85 86 87
        """Initialize the directory of image dataset.

        Parameters
        ----------
        directory : string
            Path to directory.
        """
88 89 90 91
        if(directory[-1] == '/'):
            directory = directory[:-1]
            
        self.dataset = directory
92
        File.create_dir(self.dataset)
93
    
94
    def _init_classes(self, classes = None, colors = None):
95 96 97 98 99 100 101 102 103 104
        """Initialize the classes of dataset.

        Parameters
        ----------
        classes : list of string, optional, default = None
            List of classes. If not informed, the metod set as classes all classes in dataset. 
            If there's no classes in dataset, adds two default classes.
        colors : list of string, optional, default = None
            List de colors representing the color of classe, in same order. If not informed, chooses a color at random.
        """
105
        self.classes = []
106 107 108 109 110 111 112 113 114 115 116 117 118 119

        dataset_description_path = File.make_path(self.dataset, '.dataset_description.txt')

        if os.path.exists(dataset_description_path):
            colors = []
            classes = []
            file = open(dataset_description_path, "r") 
            for line in file:
                class_info = line.replace("\n", "").split(",")
                classes.append(class_info[0])
                colors.append(class_info[1])                 
        else:
            classes = sorted(File.list_dirs(self.dataset)) if classes is None else classes.split()
            colors = [] if colors is None else colors.split()
120 121 122 123 124 125 126

        if(len(classes) > 0):
            for i in range(0, len(classes)):
                self.add_class(dialog = False, name=classes[i], color=colors[i] if i < len(colors) else None)
        else:
            self.add_class(dialog = False, color='Green')
            self.add_class(dialog = False, color='Yellow')
127
                
128
        self._current_class = 0
129
        
130

131
    def open_image(self, imagename = None):
132 133 134 135 136 137 138
        """Open a new image.

        Parameters
        ----------
        imagename : string, optional, default = None
            Filepath of image. If not informed open a dialog to choose.
        """
139 140
        
        def onclick(event):
141
            """Binds dataset generator event to click on image."""
142
            if event.xdata != None and event.ydata != None and int(event.ydata) != 0 and self._dataset_generator == True:
143 144
                x = int(event.xdata)
                y = int(event.ydata)
145 146 147 148 149 150 151
                self.tk.write_log("Coordinates: x = %d y = %d", x, y)
                
                segment, size_segment, idx_segment, run_time = self.segmenter.get_segment(x, y)
                
                if size_segment > 0:
                    self.tk.append_log("\nSegment = %d: %0.3f seconds", idx_segment, run_time)
                    
152
                    self._image, run_time = self.segmenter.paint_segment(self._image, self.classes[self._current_class]["color"].value, x, y)
153
                    self.tk.append_log("Painting segment: %0.3f seconds", run_time)
154
                    self.tk.refresh_image(self._image)
155
                    
156 157 158 159
                    if self._ground_truth == True:
                        self._gt_segments[idx_segment] = self.classes[self._current_class]["name"].value

                    elif self._dataset_generator == True:
160
                        filepath = File.save_class_image(segment, self.dataset, self.classes[self._current_class]["name"].value, self._image_name, idx_segment)
161 162
                        if filepath:
                            self.tk.append_log("\nSegment saved in %s", filepath)
163 164 165
        
        if imagename is None:
            imagename = self.tk.utils.ask_image_name()
166 167

        if imagename:
168 169
            self._image = File.open_image(imagename)
            self._image_name = File.get_filename(imagename)
170

171 172 173
            self.tk.write_log("Opening %s...", self._image_name)
            self.tk.add_image(self._image, self._image_name, onclick)
            self._const_image = self._image
174
            
175
            self.segmenter.reset()
176
            self._gt_segments = None
177

178
        
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
179 180 181 182

    def open_weight(self):
        """Open a new weight."""
        self.weight_path = self.tk.utils.ask_weight_name()
183
        self.classifier.weight_path = self.weight_path
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
184
        
185
    def restore_image(self):
186 187
        """Refresh the image and clean the segmentation.
        """
188 189 190 191
        if self._const_image is not None:
            self.tk.write_log("Restoring image...")
            self.tk.refresh_image(self._const_image)
            
192
            self.segmenter.reset()
193
            self._gt_segments = None
194 195
        
    def close_image(self):
196
        """Close the image.
197
        
198 199 200 201 202
        Raises
        ------
        IException 'Image not found'
            If there's no image opened.
        """
203
        if self._const_image is None:
204
            raise IException("Image not found!  Open an image to test, select in the menu the option File>Open Image!")
205 206 207
        
        if self.tk.close_image():
            self.tk.write_log("Closing image...")
208
            self._const_image = None
209
            self._image = None
210
            self._image_path = None
211 212

    def add_class(self, dialog = True, name = None, color = None):
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        """Add a new class.

        Parameters
        ----------
        dialog : boolean, optional, default = True
            If true open a config dialog to add the class.
        name : string, optional, default = None
            Name of class. If not informed set the name 'Class_nn' to class.
        color : string, optional, default = None
            Name of color in X11Color format, representing the class. It will used to paint the segments of class.
            If not informed choose a color at random.
            
        Raises
        ------
        IException 'You have reached the limite of %d classes'
            If you already have created self.tk.MAX_CLASSES classes.
        """
230 231 232
        n_classes = len(self.classes)
        if n_classes >= self.tk.MAX_CLASSES:
            raise IException("You have reached the limite of %d classes" % self.tk.MAX_CLASSES)
233
                
234
        def edit_class(index):
235
            """Calls method that edit the class."""
236
            self.edit_class(index)
237 238
            
        def update_current_class(index):
239
            """Calls method that update the class."""
240
            self.update_current_class(index)
241 242
        
        def process_config():
243
            """Add the class and refresh the panel of classes."""
244
            new_class = self.tk.get_config_and_destroy()
245
            new_class["name"].value = '_'.join(new_class["name"].value.split())
246 247 248

            self.classes.append( new_class )
            self.tk.write_log("New class: %s", new_class["name"].value)
249
            self.tk.refresh_panel_classes(self.classes, self._current_class)
250
            
251 252
        if name is None:
            name = "Class_%02d" % (n_classes+1)
253
        if color is None:
254
            color = util.X11Colors.random_color()
255 256
            
        class_config = OrderedDict()
257
        class_config["name"] = Config(label="Name", value=name, c_type=str)
258
        class_config["color"] = Config(label="Color (X11 Colors)", value=color, c_type='color')
259 260
        class_config["callback"] = Config(label=None, value=update_current_class, c_type=None, hidden=True)
        class_config["callback_color"] = Config(label=None, value=edit_class, c_type=None, hidden=True)
261 262 263 264 265 266 267
        class_config["args"] = Config(label=None, value=n_classes, c_type=int, hidden=True)
        
        if dialog == False:
            self.classes.append( class_config )
            return 

        title = "Add a new classe"
268 269 270
        self.tk.dialogue_config(title, class_config, process_config)        
      

271
    def edit_class(self, index):
272 273 274 275 276 277 278
        """Edit a class.

        Parameters
        ----------
        index : integer.
            Index of class in list self.classes.
        """
279
        def process_update(index):
280
            """Update the class."""
281
            updated_class = self.tk.get_config_and_destroy()
282
            updated_class["name"].value = '_'.join(updated_class["name"].value.split())
283 284 285
            
            self.classes[index] = updated_class
            self.tk.write_log("Class updated: %s", updated_class["name"].value)
286
            self.tk.refresh_panel_classes(self.classes, self._current_class)
287 288 289 290 291 292
        
        current_config = self.classes[index]
            
        title = "Edit class %s" % current_config["name"].value
        self.tk.dialogue_config(title, current_config, lambda *_ : process_update(index))
            
293
    def update_current_class(self, index):
294 295
        """Update the current class.
        """
296
        self._current_class = index
297 298
        
    def get_class_by_name(self, name):
299 300 301 302
        """Return the index for class.
        
        Parameters
        ----------
303
        name : string
304 305 306 307
            Name of class.
            
        Returns
        -------
308
        index : integer
309 310 311 312 313 314 315
            Index of class in list self.classes.

        Raises
        ------
        Exception 'Class not found'
            If name not found in self.classes.
        """
316 317 318 319 320 321
        name = name.strip()
        
        for cl in self.classes:
            if cl["name"].value == name:
                return cl
        raise Exception("Class not found")
322

323
        
324
    def set_dataset_path(self):
325 326
        """Open a dialog to choose the path to directory of image dataset.
        """
327 328
        directory = self.tk.utils.ask_directory(default_dir = self.dataset)
        if directory:
329
            self._init_dataset(directory)
330 331
            self.tk.write_log("Image dataset defined: %s", self.dataset)
            
332
            self._init_classes()
333
            self.tk.refresh_panel_classes(self.classes)
334
            
335
            if self.classifier: self.classifier.reset()
336
        self.has_trained=False
337
            
338
    def toggle_dataset_generator(self):
339 340
        """Enable/disable the dataset generator on click in image.
        """
341
        self._dataset_generator = not self._dataset_generator
342

343 344
            
    def select_segmenter(self):
345 346
        """Open a dialog to choose the segmenter.
        """
347 348
        title = "Choosing a segmenter"
        self.tk.write_log(title)
349

350
        current_config = segmentation.get_segmenter_config()
351
        
352
        def process_config():
353
            """Update the current segmenter."""
354
            new_config = self.tk.get_config_and_destroy()
355

356 357 358
            self.segmenter = [new_config[segmenter].meta for segmenter in new_config
                                if new_config[segmenter].value == True ][0]()

359
            self.tk.append_log("\nSegmenter: %s\n%s", str(self.segmenter.get_name()), str(self.segmenter.get_summary_config()))
360 361 362 363 364
            segmentation.set_segmenter_config(new_config)

        self.tk.dialogue_choose_one(title, current_config, process_config)

    def config_segmenter(self):
365 366
        """Open a dialog to configure the current segmenter.
        """
367 368 369 370 371 372
        title = "Configuring %s" % self.segmenter.get_name()
        self.tk.write_log(title)

        current_config = self.segmenter.get_config()
        
        def process_config():
373
            """Update the configs of current segmenter."""
374 375 376
            new_config = self.tk.get_config_and_destroy()

            self.segmenter.set_config(new_config)
377
            self.tk.append_log("\nConfig updated:\n%s", str(self.segmenter.get_summary_config()))
378
            self.segmenter.reset()
379 380

        self.tk.dialogue_config(title, current_config, process_config)
381
        
382
    def run_segmenter(self, refresh_image=True):
383
        """Do the segmentation of image, using the current segmenter.
384
        
385 386 387 388 389
        Raises
        ------
        IException 'Image not found'
            If there's no image opened.
        """
390
        if self._const_image is None:
391
            raise IException("Image not found!  Open an image to test, select in the menu the option File>Open Image!")
392
        
393
        self.tk.write_log("Running %s...", self.segmenter.get_name())
394 395 396 397 398

        self.tk.append_log("\nConfig: %s", str(self.segmenter.get_summary_config()))
        self._image, run_time = self.segmenter.run(self._const_image)
        self.tk.append_log("Time elapsed: %0.3f seconds", run_time)
        
399 400
        self._gt_segments = [None]*(max(self.segmenter.get_list_segments())+1)
        
401 402
        if refresh_image:
            self.tk.refresh_image(self._image)
403 404


405
    def select_extractors(self):
406
        """Open a dialog to select the collection of extractors.
407
        
408 409 410 411 412
        Raises
        ------
        IException 'Please select at least one extractor'
            If no extractor was selected.
        """
413 414 415 416 417 418
        title = "Selecting extractors"
        self.tk.write_log(title)

        current_config = extraction.get_extractor_config()
        
        def process_config():
419
            """Update the collection of extractors."""
420 421 422 423
            new_config = self.tk.get_config_and_destroy()

            self.extractors = [new_config[extractor].meta for extractor in new_config
                                if new_config[extractor].value == True ]
424
            
425
            if len(self.extractors) == 0:
426
                raise IException("Please select an extractor from the menu under Features Extraction> Select extractors! ")
427
            
428 429 430 431 432 433
            self.tk.append_log("\nConfig updated:\n%s", 
                                '\n'.join(["%s: %s" % (new_config[extractor].label, "on" if new_config[extractor].value==True else "off")
                                            for extractor in new_config]))
            extraction.set_extractor_config(new_config)

        self.tk.dialogue_select(title, current_config, process_config)
434 435
        
    def run_extractors(self):
436 437
        """Perform a feature extraction on all images of dataset, using the current collection of extractors.
        """
438
        self.tk.write_log("Running extractors on all images in %s", self.dataset)
439 440
        self.tk._root.update_idletasks()
        fextractor = FeatureExtractor(self.extractors,self.tk)
441 442
        self.tk.append_log("%s", '\n'.join([extraction._extractor_list[extractor].label for extractor in extraction._extractor_list
                                                if extraction._extractor_list[extractor].value == True ]))
443
        
444
        output_file, run_time = fextractor.extract_all(self.dataset, "training")
445 446
        self.tk.append_log("\nOutput file saved in %s", output_file)
        self.tk.append_log("Time elapsed: %0.3f seconds", run_time)
447 448
        
        if self.classifier: self.classifier.reset()
449

450 451 452 453 454
    def run_extract_frame(self):
        self.tk.write_log("Running extract frames from videos")
        extract_frame=ExtractFM()
        extract_frame.run(self.tk)

455
    def select_classifier(self):
456 457 458 459 460 461 462
        """Open a dialog to select the classifier.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
463
        if self.classifier is None:
464
            raise IException("Classifier not found! Select from the menu the option Training>Choose Classifier!")
465 466 467 468 469
        
        title = "Choosing a classifier"
        self.tk.write_log(title)

        current_config = classification.get_classifier_config()
470

471 472
        
        def process_config():
473
            """Update the current classifier."""
474
            new_config = self.tk.get_config_and_destroy()
Geazy Menezes's avatar
Geazy Menezes committed
475
            
476 477 478 479 480 481 482 483 484
            self.classifier = [new_config[classifier].meta for classifier in new_config
                                if new_config[classifier].value == True ][0]()

            self.tk.append_log("\nClassifier: %s\n%s", str(self.classifier.get_name()), str(self.classifier.get_summary_config()))
            classification.set_classifier_config(new_config)

        self.tk.dialogue_choose_one(title, current_config, process_config)
        
    def configure_classifier(self):
485 486 487 488 489 490 491
        """Set the configuration of current classifier.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
492
        if self.classifier is None:
493
            raise IException("Classifier not found! Select from the menu the option Training>Choose Classifier!")
494 495 496 497 498 499 500 501 502 503 504
        
        title = "Configuring %s" % self.classifier.get_name()
        self.tk.write_log(title)

        current_config = self.classifier.get_config()
        
        def process_config():
            new_config = self.tk.get_config_and_destroy()

            self.classifier.set_config(new_config)
            self.tk.append_log("\nConfig updated:\n%s", str(self.classifier.get_summary_config()))
505 506
            
            if self.classifier: self.classifier.reset()
507 508 509 510 511

        self.tk.dialogue_config(title, current_config, process_config)
    
    
    def run_classifier(self):
512 513
        """Run the classifier on the current image.
        As result, paint the image with color corresponding to predicted class of all segment.
514

515 516 517 518 519 520 521
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        IException 'Image not found'
            If there's no image opened.
        """
522
        if self.classifier is None:
523 524
            raise IException("Classifier not found! Select from the menu the option Training>Choose Classifier!")

525
        if self._const_image is None:
526 527
            raise IException("Image not found!  Open an image to test, select in the menu the option File>Open Image!")

528 529
        self.tk.write_log("Running %s...", self.classifier.get_name())
        self.tk.append_log("\n%s", str(self.classifier.get_summary_config()))
530

531
        #self.classifier.set
532

533 534
        start_time = TimeUtils.get_time()

535
        # Perform a segmentation, if needed.
536 537 538
        list_segments = self.segmenter.get_list_segments()
        if len(list_segments) == 0:
            self.tk.append_log("Running %s... (%0.3f seconds)", self.segmenter.get_name(), (TimeUtils.get_time() - start_time))
539

540
            self._image, _ = self.segmenter.run(self._const_image)
541
            self.tk.refresh_image(self._image)
542
            list_segments = self.segmenter.get_list_segments()
543
            self._gt_segments = [None]*(max(list_segments)+1)
544

545
        #  New and optimized classification
546
        tmp = ".tmp"
547
        File.remove_dir(File.make_path(self.dataset, tmp))
548

549
        self.tk.append_log("Generating test images... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
550

551
        len_segments = {}
552 553 554 555 556 557 558 559 560 561 562 563

        print("Wait to complete processes all images!")
        with tqdm(total=len(list_segments)) as pppbar:
            for idx_segment in list_segments:
                segment, size_segment, idx_segment = self.segmenter.get_segment(self, idx_segment=idx_segment)[:-1]
                # Problem here! Dataset removed.
                filepath = File.save_only_class_image(segment, self.dataset, tmp, self._image_name, idx_segment)
                len_segments[idx_segment] = size_segment
                pppbar.update(1)
            pppbar.close()

        gc.collect()
564
        # Perform the feature extraction of all segments in image ( not applied to ConvNets ).
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
565
        if self.classifier.must_extract_features():
566 567
            self.tk.append_log("Running extractors on test images... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
            fextractor = FeatureExtractor(self.extractors)
568
            output_file, _ = fextractor.extract_all(self.dataset, "test", dirs=[tmp])
569

570
        self.tk.append_log("Running classifier on test data... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
571 572

        # Get the label corresponding to predict class for each segment of image.
573 574
        labels = self.classifier.classify(self.dataset, test_dir=tmp, test_data="test.arff", image=self._const_image)
        File.remove_dir(File.make_path(self.dataset, tmp))
575

576 577 578
        # Result is the class for each superpixel
        if type(labels) is types.ListType:
            self.tk.append_log("Painting segments... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
579

580 581 582
            # If ground truth mode, show alternative results
            if self._ground_truth == True:
                return self._show_ground_truth(list_segments, len_segments, labels, start_time)
583

584 585
            # Create a popup with results of classification.
            popup_info = "%s\n" % str(self.classifier.get_summary_config())
586

587 588
            len_total = sum([len_segments[idx] for idx in len_segments])
            popup_info += "%-16s%-16s%0.2f%%\n" % ("Total", str(len_total), (len_total*100.0)/len_total)
589

590 591 592 593 594 595 596 597 598 599 600
            # Paint the image.
            self._mask_image = np.zeros(self._const_image.shape[:-1], dtype="uint8")
            height, width, channels = self._image.shape
            self.class_color = np.zeros((height,width,3), np.uint8)
            for (c, cl) in enumerate(self.classes):
                idx_segment = [ list_segments[idx] for idx in range(0, len(labels)) if cl["name"].value == labels[idx]]
                if len(idx_segment) > 0:
                    self._image, _ = self.segmenter.paint_segment(self._image, cl["color"].value, idx_segment=idx_segment, border=False)
                    for idx in idx_segment:
                        self._mask_image[self.segmenter._segments == idx] = c
                        self.class_color[self.segmenter._segments == idx] = X11Colors.get_color(cl["color"].value)
601

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
                len_classes = sum([len_segments[idx] for idx in idx_segment])
                popup_info += "%-16s%-16s%0.2f%%\n" % (cl["name"].value, str(len_classes), (len_classes*100.0)/len_total)


            self.tk.refresh_image(self._image)
            self.tk.popup(popup_info)
        else:
            # Result is an image
            self._mask_image = labels
            height, width, channels = self._image.shape
            self.class_color = np.zeros((height,width,3), np.uint8)

            for (c, cl) in enumerate(self.classes):
                self.class_color[labels == c] = X11Colors.get_color(cl["color"].value)

            self._image = cv2.addWeighted(self._const_image, 0.7, self.class_color, 0.3, 0)
            self.tk.refresh_image(self._image)
619

620

621
        end_time = TimeUtils.get_time()
622

623 624
        self.tk.append_log("\nClassification finished")
        self.tk.append_log("Time elapsed: %0.3f seconds", (end_time - start_time))
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
625 626 627

    def run_training(self):
        start_time = TimeUtils.get_time()
628
        
629 630 631
        # Training do not need an image opened (consider removing these two lines)
        #      if self._const_image is None:
        #          raise IException("Image not found")
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
632 633 634 635 636 637 638 639 640 641
        
        if self.classifier.must_train():
            
            if self.classifier.must_extract_features():
                self.tk.append_log("Creating training data... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
                fextractor = FeatureExtractor(self.extractors)
                output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
        
            self.tk.append_log("Training classifier...")
            
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
642
            self.classifier.train(self.dataset, "training")
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
643 644 645 646

            self.tk.append_log("DONE (%0.3f seconds)",  (TimeUtils.get_time() - start_time))
        
        self._image = self._const_image
647
        self.has_trained=True
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
648

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    
    def _show_ground_truth(self, list_segments, len_segments, labels, start_time):
        """Paint only wrong classified segments and show ground truth confusion matrix.
        
        Parameters
        ----------
        list_segments : list of integer
            List of index segments.
        len_segments : list of integer
            List of segments sizes.
        labels : list of string
            List of predicted class name for each segment.
        start_time : floating point
            Start time of classification.
        """
        classes = list(set(labels))
        classes.sort()
        
        n_segments = len(labels)
        spx_matrix = np.zeros((len(classes), len(classes)), np.int) 
        px_matrix = np.zeros((len(classes), len(classes)), np.int) 

        # Create the confusion matrix and paint wrong classified segments individually.
        for idx_segment in list_segments:
            if self._gt_segments[idx_segment] is not None:
                gt_class = classes.index(self._gt_segments[idx_segment])
                predicted_class = classes.index(labels[idx_segment])
                
                spx_matrix[ gt_class ][ predicted_class ] += 1
                px_matrix[ gt_class ][ predicted_class ] += len_segments[idx_segment]
        
                if gt_class != predicted_class:
                    self._image, _ = self.segmenter.paint_segment(self._image, self.get_class_by_name(labels[idx_segment])["color"].value, idx_segment=[idx_segment], border=False)
        
        # Create a popup with results of classification.
        popup_info = "%s\n" % str(self.classifier.get_summary_config())
        popup_info += Classifier.confusion_matrix(classes, spx_matrix, "Superpixels")
        popup_info += Classifier.confusion_matrix(classes, px_matrix, "PixelSum")
        
        self.tk.refresh_image(self._image)
        self.tk.popup(popup_info)
690

691 692 693 694 695
        end_time = TimeUtils.get_time()
            
        self.tk.append_log("\nClassification finished")
        self.tk.append_log("Time elapsed: %0.3f seconds", (end_time - start_time))
        
696

697 698 699 700 701
    def toggle_ground_truth(self):
        """Enable/disable ground truth mode.
        """
        self._ground_truth = not self._ground_truth
        
702
    def cross_validation(self):
703 704 705 706 707 708 709
        """Run a cross validation on all generated segments in image dataset.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
710
        if self.classifier is None:
711
            raise IException("Classifier not found! Select from the menu the option Training>Choose Classifier!")
712 713 714 715 716 717 718 719 720 721 722 723 724 725
        
        if self.classifier.must_train():
            self.tk.write_log("Creating training data...")
            
            fextractor = FeatureExtractor(self.extractors)
            output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
            self.classifier.train(self.dataset, "training")
        
        self.tk.write_log("Running Cross Validation on %s...", self.classifier.get_name())
        self.tk.append_log("\n%s", str(self.classifier.get_summary_config()))
        
        popup_info = self.classifier.cross_validate()
        self.tk.append_log("Cross Validation finished")
        self.tk.popup(popup_info)
726 727
        
    def experimenter_all(self):
728 729 730 731 732 733 734
        """Perform a test in all availabel classifiers e show the results.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
735
        if self.classifier is None:
736
            raise IException("Classifier not found! Select from the menu the option Training>Choose Classifier!")
737 738 739 740
        
        if self.tk.ask_ok_cancel("Experimenter All", "This may take several minutes to complete. Are you sure?"):
            if self.classifier.must_train():
                self.tk.write_log("Creating training data...")
741

742 743 744 745 746 747 748 749 750
                fextractor = FeatureExtractor(self.extractors)
                output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
                self.classifier.train(self.dataset, "training")
                
            self.tk.write_log("Running Experimenter All on %s...", self.classifier.get_name())
            
            popup_info = self.classifier.experimenter()
            self.tk.append_log("\nExperimenter All finished")
            self.tk.popup(popup_info)
751 752


753
    def about(self):
754
        self.tk.show_info("Pynovisao\n\nVersion 1.0.0\n\nAuthors:\nAdair da Silva Oliveira Junior\nAlessandro dos Santos Ferreira\nDiego Andre Sant Ana\nDiogo Nunes Goncalves\nEverton Castelao Tetila\nFelipe Silveira\nGabriel Kirsten Menezes\nGilberto Astolfi\nHemerson Pistori\nNicolas Alessandro de Souza Belete")
755 756
        
            
757
    def func_not_available(self):
758
        """Use this method to bind menu options not available."""
759
        self.tk.write_log("This functionality is not available right now.")
760

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
    def assign_using_labeled_image(self, imagename = None, refresh_image=True):
        """Open a new image.

        Parameters
        ----------
        imagename : string, optional, default = None
            Filepath of image. If not informed open a dialog to choose.
        """

        if len(self.segmenter.get_list_segments()) == 0:
            self.tk.write_log("Error: Image not segmented")
            return

        if self._image is None:
            self.tk.write_log("Error: Open the image to be targeted")
            return

        if imagename is None:
            imagename = self.tk.utils.ask_image_name()

        if imagename:
            self._image_gt = File.open_image_lut(imagename)
            self._image_gt_name = File.get_filename(imagename)

            self.tk.write_log("Opening %s...", self._image_gt_name)

            qtd_classes = len(self.classes)
            qtd_superpixel = len(self.segmenter.get_list_segments())

        tam_gt = self._image_gt.shape
        tam_im = self._image.shape
        if len(tam_gt) > 2:
            self.tk.write_log("Color image is not supported. You must open a gray-scale image")
            return

        if tam_gt[0] != tam_im[0] or tam_gt[1] != tam_im[1]:
            self.tk.write_log("Images with different sizes")
            return
            
        #hist_classes_superpixels = np.zeros((qtd_superpixel, qtd_classes), np.int)      
    
        #for i in range(0, tam_gt[0]):
        #    for j in range(0, tam_gt[1]):          
        #        class_pixel = self._image_gt[i,j]
        #        if class_pixel > qtd_classes:
        #            self.tk.write_log("There is no class for the pixel [%d,%d] = %d on the image", i, j, class_pixel)
        #        else:
        #            #segment, size_segment, idx_segment, run_time = self.segmenter.get_segment(px = j, py = i)
        #            idx_segment = self.segmenter._segments[i, j]
        #            hist_classes_superpixels[idx_segment, class_pixel] = hist_classes_superpixels[idx_segment, class_pixel] + 1
        #    if i % 10 == 0:
        #        self.tk.write_log("Annotating row %d of %d", i, tam_gt[0])
                
        qtd_bad_superpixels = 0
        
        for idx_segment in range(0, qtd_superpixel):
            hist_classes_superpixels = np.histogram(self._image_gt[self.segmenter._segments == idx_segment], bins=range(0,len(self.classes)+1))[0]

            idx_class = np.argmax(hist_classes_superpixels)
            sum_vector = np.sum(hist_classes_superpixels)
            if refresh_image:
                self._image, run_time = self.segmenter.paint_segment(self._image, self.classes[idx_class]["color"].value, idx_segment = [idx_segment])
            #self.tk.append_log("posicao maior = %x  --  soma vetor %d", x, sum_vector)
            if hist_classes_superpixels[idx_class]/sum_vector < 0.5:
                qtd_bad_superpixels = qtd_bad_superpixels + 1

            if self._ground_truth == True:
                self._gt_segments[idx_segment] = self.classes[self._current_class]["name"].value

            elif self._dataset_generator == True:
                if idx_segment % 10 == 0:
                    self.tk.write_log("Saving %d of %d", (idx_segment+1), qtd_superpixel)

                segment, size_segment, idx_segment, run_time = self.segmenter.get_segment(idx_segment = idx_segment)
                filepath = File.save_class_image(segment, self.dataset, self.classes[idx_class]["name"].value, self._image_name, idx_segment)
                if filepath:
                    self.tk.append_log("\nSegment saved in %s", filepath)

        self.tk.refresh_image(self._image)
        self.tk.write_log("%d bad annotated superpixels of %d superpixel (%0.2f)", qtd_bad_superpixels, qtd_superpixel, (float(qtd_bad_superpixels)/qtd_superpixel)*100)



    def run_segmenter_folder(self, foldername=None):

        if foldername is None:
            foldername = self.tk.utils.ask_directory()

        valid_images_extension = ['.jpg', '.png', '.gif', '.jpeg', '.tif']

        fileimages = [name for name in os.listdir(foldername)
                    if os.path.splitext(name)[-1].lower() in valid_images_extension]

        for (i,file) in enumerate(fileimages):
            path_file = os.path.join(foldername, file)
            self.open_image(path_file)
            self.run_segmenter(refresh_image=False)
            label_image = (os.path.splitext(file)[-2] + '_json')
            self.assign_using_labeled_image(os.path.join(foldername, label_image, 'label.png'), refresh_image=False)
            self.tk.write_log("%d of %d images", i, len(fileimages))

    def run_classifier_folder(self, foldername=None):

        if self.classifier is None:
865
            raise IException("Classifier not found! Select from the menu the option Training>Choose Classifier!")
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960

        if foldername is None:
            foldername = self.tk.utils.ask_directory()

        valid_images_extension = ['.jpg', '.png', '.gif', '.jpeg', '.tif']

        fileimages = [name for name in os.listdir(foldername)
                    if os.path.splitext(name)[-1].lower() in valid_images_extension]

        fileimages.sort()

        all_accuracy = []
        all_IoU = []
        all_frequency_weighted_IU = []

        for file in fileimages:
            path_file = os.path.join(foldername, file)
            self.open_image(path_file)
            self.run_classifier()
            label_image = os.path.join(foldername, (os.path.splitext(file)[-2] + '_json'), 'label.png')
            self._image_gt = File.open_image_lut(label_image)
            self._image_gt_name = File.get_filename(label_image)

            tam_gt = self._image_gt.shape
            tam_im = self._mask_image.shape
            if len(tam_gt) > 2:
                self.tk.write_log("Color image is not supported. You must open a gray-scale image")
                return

            if tam_gt[0] != tam_im[0] or tam_gt[1] != tam_im[1]:
                self.tk.write_log("Images with different sizes")
                return

            
            confusion_matrix = MetricUtils.confusion_matrix(self._mask_image, self._image_gt)
            [mean_accuracy, accuracy] = MetricUtils.mean_accuracy(self._mask_image, self._image_gt)
            [mean_IoU, IoU] = MetricUtils.mean_IU(self._mask_image, self._image_gt)
            frequency_weighted_IU = MetricUtils.frequency_weighted_IU(self._mask_image, self._image_gt)

            print('Matriz de Confusao')
            print(confusion_matrix)

            print('Mean Pixel Accuracy')
            print(mean_accuracy)

            print('Pixel accuracy per class')
            print(accuracy)

            print('Mean Intersction over Union')
            print(mean_IoU)

            print('Intersction over Union per class')
            print(IoU)

            print('Frequency Weighted IU')
            print(frequency_weighted_IU)

            all_accuracy.append(accuracy)
            all_IoU.append(IoU)
            all_frequency_weighted_IU.append(frequency_weighted_IU)

            if not os.path.exists("../models_results/"):
                os.makedirs("../models_results/")
            
            path = File.make_path("../models_results/" + file + ".txt")
            path_img = File.make_path("../models_results/" + file + "_seg1.tif")
            path_img2 = File.make_path("../models_results/" + file + "_seg2.tif")

            img = Image.fromarray(self._image)
            img.save(path_img)
            img = Image.fromarray(self.class_color)
            img.save(path_img2)
            
            f=open(path,'ab')
            np.savetxt(f, ['Matriz de confusao'], fmt='%s')
            np.savetxt(f, confusion_matrix, fmt='%.5f')
            np.savetxt(f, ['\nAcuracia'], fmt='%s')
            np.savetxt(f, accuracy, fmt='%.5f')
            np.savetxt(f, ['\nInterseccao sobre uniao'], fmt='%s')
            np.savetxt(f, IoU, fmt='%.5f')
            np.savetxt(f, ['\nInterseccao sobre uniao com peso'], fmt='%s')
            np.savetxt(f, [frequency_weighted_IU], fmt='%.5f')
            f.close()


        path = File.make_path("../models_results/all_metrics.txt")
        f=open(path,'ab')
        np.savetxt(f, ['All Acuracia'], fmt='%s')
        np.savetxt(f, all_accuracy, fmt='%.5f')
        np.savetxt(