pynovisao.py 51.8 KB
Newer Older
1 2
#
"""
3 4 5 6
    This file must contain the implementation code for all actions of pynovisao.
    
    Name: pynovisao.py
    Author: Alessandro dos Santos Ferreira ( santosferreira.alessandro@gmail.com )
7
"""
8
import sys
9
import gc
10
from collections import OrderedDict
11
import numpy as np
12
import os
13
import interface
14 15
import types
import cv2
16
from interface.interface import InterfaceException as IException
17
from PIL import Image
18 19
from pascal_voc_writer import Writer as wr
import shutil
20
from tkinter import *
21
import segmentation
22
import extraction
23
from extraction import FeatureExtractor
24
import time
25
import classification
26
from classification import Classifier
27

28
import util
29 30
from extraction.extractor_frame_video import ExtractFM

31
from util.config import Config
32
from util.file_utils import File
33
from util.utils import TimeUtils
34 35
from util.utils import MetricUtils
from util.x11_colors import X11Colors
36
import functools as ft
37 38
import multiprocessing
from multiprocessing import Process, Manager
39
import threading as th
40
from tqdm import tqdm
41
class Act(object):
42
    """Store all actions of Pynovisao."""
43

Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
44
    def __init__(self, tk, args):
45 46 47 48 49 50 51 52 53
        """Constructor.

        Parameters
        ----------
        tk : Interface
            Pointer to interface that handles UI.
        args : Dictionary
            Arguments of program.
        """
54
        self.tk = tk
55
        self.has_trained = False
56 57 58
        
        self.segmenter = [segmentation._segmenter_list[segmenter].meta for segmenter in segmentation._segmenter_list
                            if segmentation._segmenter_list[segmenter].value == True ][0]()
59 60 61
        
        self.extractors = [extraction._extractor_list[extractor].meta for extractor in extraction._extractor_list
                            if extraction._extractor_list[extractor].value == True ]
62 63 64 65 66 67
        
        try:
            self.classifier = [classification._classifier_list[classifier].meta for classifier in classification._classifier_list
                                if classification._classifier_list[classifier].value == True ][0]()
        except:
            self.classifier = None
68

69 70
        self._image = None
        self._const_image = None
71
        self._mask_image = None
72
        self._image_name = None
73
        self._image_path = None
74
        self._xml_file = None
75 76 77 78 79 80 81
        current_path=os.getcwd()
        current_path=current_path[-1::-1]
        current_path=current_path[3::1]
        current_path=current_path[-1::-1]
        current_path=current_path+"data"
        self._img_folder=current_path+"/images"
        self._seg_folder=current_path+"/demo"
82
                    
83 84
        self._init_dataset(args["dataset"])
        self._init_classes(args["classes"], args["colors"])
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
85

86
        self._dataset_generator = True
87 88
        self._ground_truth = False
        self._gt_segments = None
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
89
        self.weight_path = None
90

91
    
92
    def _init_dataset(self, directory):
93 94 95 96 97 98 99
        """Initialize the directory of image dataset.

        Parameters
        ----------
        directory : string
            Path to directory.
        """
100 101 102 103
        if(directory[-1] == '/'):
            directory = directory[:-1]
            
        self.dataset = directory
104
        File.create_dir(self.dataset)
105
    
106
    def _init_classes(self, classes = None, colors = None):
107 108 109 110 111 112 113 114 115 116
        """Initialize the classes of dataset.

        Parameters
        ----------
        classes : list of string, optional, default = None
            List of classes. If not informed, the metod set as classes all classes in dataset. 
            If there's no classes in dataset, adds two default classes.
        colors : list of string, optional, default = None
            List de colors representing the color of classe, in same order. If not informed, chooses a color at random.
        """
117
        self.classes = []
118 119 120 121 122 123 124 125 126 127 128 129 130 131

        dataset_description_path = File.make_path(self.dataset, '.dataset_description.txt')

        if os.path.exists(dataset_description_path):
            colors = []
            classes = []
            file = open(dataset_description_path, "r") 
            for line in file:
                class_info = line.replace("\n", "").split(",")
                classes.append(class_info[0])
                colors.append(class_info[1])                 
        else:
            classes = sorted(File.list_dirs(self.dataset)) if classes is None else classes.split()
            colors = [] if colors is None else colors.split()
132 133 134 135 136 137 138

        if(len(classes) > 0):
            for i in range(0, len(classes)):
                self.add_class(dialog = False, name=classes[i], color=colors[i] if i < len(colors) else None)
        else:
            self.add_class(dialog = False, color='Green')
            self.add_class(dialog = False, color='Yellow')
139
                
140 141
        self._current_class = 0

142
    def open_image(self, imagename = None):
143
        """Open a new image and starts a new XML instance for such image.
144 145 146 147 148 149

        Parameters
        ----------
        imagename : string, optional, default = None
            Filepath of image. If not informed open a dialog to choose.
        """
150 151
        
        def onclick(event):
152
            """Binds dataset generator event to click on image."""
153
            print(event)
154
            if event.xdata != None and event.ydata != None and int(event.ydata) != 0 and self._dataset_generator == True:
155 156
                x = int(event.xdata)
                y = int(event.ydata)
157 158
                self.tk.write_log("Coordinates: x = %d y = %d", x, y)
                
159
                segment, size_segment, self._xml_file, idx_segment, run_time = self.segmenter.get_segment(x, y, self._xml_file, self.classes[self._current_class]["name"].value)
160 161 162 163
                
                if size_segment > 0:
                    self.tk.append_log("\nSegment = %d: %0.3f seconds", idx_segment, run_time)
                    
164
                    self._image, run_time = self.segmenter.paint_segment(self._image, self.classes[self._current_class]["color"].value, x, y)
165
                    self.tk.append_log("Painting segment: %0.3f seconds", run_time)
166
                    self.tk.refresh_image(self._image)
167
                    
168 169 170 171
                    if self._ground_truth == True:
                        self._gt_segments[idx_segment] = self.classes[self._current_class]["name"].value

                    elif self._dataset_generator == True:
172
                        filepath = File.save_class_image(segment, self.dataset, self.classes[self._current_class]["name"].value, self._image_name, idx_segment)
173 174
                        if filepath:
                            self.tk.append_log("\nSegment saved in %s", filepath)
175 176
        if imagename is None:
            imagename = self.tk.utils.ask_image_name()
177 178

        if imagename:
179 180
            self._image = File.open_image(imagename)
            self._image_name = File.get_filename(imagename)
181
            self._xml_file=wr(self._image_name,self._image.shape[0],self._image.shape[1])
182 183 184
            self.tk.write_log("Opening %s...", self._image_name)
            self.tk.add_image(self._image, self._image_name, onclick)
            self._const_image = self._image
185

186
            self.segmenter.reset()
187
            self._gt_segments = None
188

189
        
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
190 191 192 193

    def open_weight(self):
        """Open a new weight."""
        self.weight_path = self.tk.utils.ask_weight_name()
194
        self.classifier.weight_path = self.weight_path
195
        print(self.weight_path)
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
196
        
197
    def restore_image(self):
198 199
        """Refresh the image and clean the segmentation.
        """
200 201 202 203
        if self._const_image is not None:
            self.tk.write_log("Restoring image...")
            self.tk.refresh_image(self._const_image)
            
204
            self.segmenter.reset()
205
            self._gt_segments = None
206 207
        
    def close_image(self):
208
        """Close the image.
209
        
210 211 212 213 214
        Raises
        ------
        IException 'Image not found'
            If there's no image opened.
        """
215
        if self._const_image is None:
216
            raise IException("Image not found!  Open an image to test, select in the menu the option File>Open Image!")
217 218 219
        
        if self.tk.close_image():
            self.tk.write_log("Closing image...")
220
            self._const_image = None
221
            self._image = None
222
            self._image_path = None
223 224

    def add_class(self, dialog = True, name = None, color = None):
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        """Add a new class.

        Parameters
        ----------
        dialog : boolean, optional, default = True
            If true open a config dialog to add the class.
        name : string, optional, default = None
            Name of class. If not informed set the name 'Class_nn' to class.
        color : string, optional, default = None
            Name of color in X11Color format, representing the class. It will used to paint the segments of class.
            If not informed choose a color at random.
            
        Raises
        ------
        IException 'You have reached the limite of %d classes'
            If you already have created self.tk.MAX_CLASSES classes.
        """
242 243 244
        n_classes = len(self.classes)
        if n_classes >= self.tk.MAX_CLASSES:
            raise IException("You have reached the limite of %d classes" % self.tk.MAX_CLASSES)
245
                
246
        def edit_class(index):
247
            """Calls method that edit the class."""
248
            self.edit_class(index)
249 250
            
        def update_current_class(index):
251
            """Calls method that update the class."""
252
            self.update_current_class(index)
253 254
        
        def process_config():
255
            """Add the class and refresh the panel of classes."""
256
            new_class = self.tk.get_config_and_destroy()
257
            new_class["name"].value = '_'.join(new_class["name"].value.split())
258 259 260

            self.classes.append( new_class )
            self.tk.write_log("New class: %s", new_class["name"].value)
261
            self.tk.refresh_panel_classes(self.classes, self._current_class)
262
            
263 264
        if name is None:
            name = "Class_%02d" % (n_classes+1)
265
        if color is None:
266
            color = util.X11Colors.random_color()
267 268
            
        class_config = OrderedDict()
269
        class_config["name"] = Config(label="Name", value=name, c_type=str)
270
        class_config["color"] = Config(label="Color (X11 Colors)", value=color, c_type='color')
271 272
        class_config["callback"] = Config(label=None, value=update_current_class, c_type=None, hidden=True)
        class_config["callback_color"] = Config(label=None, value=edit_class, c_type=None, hidden=True)
273 274 275 276 277 278 279
        class_config["args"] = Config(label=None, value=n_classes, c_type=int, hidden=True)
        
        if dialog == False:
            self.classes.append( class_config )
            return 

        title = "Add a new classe"
280 281 282
        self.tk.dialogue_config(title, class_config, process_config)        
      

283
    def edit_class(self, index):
284 285 286 287 288 289 290
        """Edit a class.

        Parameters
        ----------
        index : integer.
            Index of class in list self.classes.
        """
291
        def process_update(index):
292
            """Update the class."""
293
            updated_class = self.tk.get_config_and_destroy()
294
            updated_class["name"].value = '_'.join(updated_class["name"].value.split())
295 296 297
            
            self.classes[index] = updated_class
            self.tk.write_log("Class updated: %s", updated_class["name"].value)
298
            self.tk.refresh_panel_classes(self.classes, self._current_class)
299 300 301 302 303 304
        
        current_config = self.classes[index]
            
        title = "Edit class %s" % current_config["name"].value
        self.tk.dialogue_config(title, current_config, lambda *_ : process_update(index))
            
305
    def update_current_class(self, index):
306 307
        """Update the current class.
        """
308
        self._current_class = index
309 310
        
    def get_class_by_name(self, name):
311 312 313 314
        """Return the index for class.
        
        Parameters
        ----------
315
        name : string
316 317 318 319
            Name of class.
            
        Returns
        -------
320
        index : integer
321 322 323 324 325 326 327
            Index of class in list self.classes.

        Raises
        ------
        Exception 'Class not found'
            If name not found in self.classes.
        """
328 329 330 331 332 333
        name = name.strip()
        
        for cl in self.classes:
            if cl["name"].value == name:
                return cl
        raise Exception("Class not found")
334

335
        
336
    def set_dataset_path(self):
337 338
        """Open a dialog to choose the path to directory of image dataset.
        """
339 340
        directory = self.tk.utils.ask_directory(default_dir = self.dataset)
        if directory:
341
            self._init_dataset(directory)
342 343
            self.tk.write_log("Image dataset defined: %s", self.dataset)
            
344
            self._init_classes()
345
            self.tk.refresh_panel_classes(self.classes)
346
            
347
            if self.classifier: self.classifier.reset()
348
        self.has_trained=False
349
            
350
    def toggle_dataset_generator(self):
351 352
        """Enable/disable the dataset generator on click in image.
        """
353
        self._dataset_generator = not self._dataset_generator
354

355 356
            
    def select_segmenter(self):
357 358
        """Open a dialog to choose the segmenter.
        """
359 360
        title = "Choosing a segmenter"
        self.tk.write_log(title)
361

362
        current_config = segmentation.get_segmenter_config()
363
        
364
        def process_config():
365
            """Update the current segmenter."""
366
            new_config = self.tk.get_config_and_destroy()
367

368 369 370
            self.segmenter = [new_config[segmenter].meta for segmenter in new_config
                                if new_config[segmenter].value == True ][0]()

371
            self.tk.append_log("\nSegmenter: %s\n%s", str(self.segmenter.get_name()), str(self.segmenter.get_summary_config()))
372 373 374 375 376
            segmentation.set_segmenter_config(new_config)

        self.tk.dialogue_choose_one(title, current_config, process_config)

    def config_segmenter(self):
377 378
        """Open a dialog to configure the current segmenter.
        """
379 380 381 382 383 384
        title = "Configuring %s" % self.segmenter.get_name()
        self.tk.write_log(title)

        current_config = self.segmenter.get_config()
        
        def process_config():
385
            """Update the configs of current segmenter."""
386 387 388
            new_config = self.tk.get_config_and_destroy()

            self.segmenter.set_config(new_config)
389
            self.tk.append_log("\nConfig updated:\n%s", str(self.segmenter.get_summary_config()))
390
            self.segmenter.reset()
391 392

        self.tk.dialogue_config(title, current_config, process_config)
393
        
394
    def run_segmenter(self, refresh_image=True):
395
        """Do the segmentation of image, using the current segmenter.
396
        
397 398 399 400 401
        Raises
        ------
        IException 'Image not found'
            If there's no image opened.
        """
402
        if self._const_image is None:
403
            raise IException("Image not found!  Open an image to test, select in the menu the option File>Open Image!")
404
        
405
        self.tk.write_log("Running %s...", self.segmenter.get_name())
406 407 408 409 410

        self.tk.append_log("\nConfig: %s", str(self.segmenter.get_summary_config()))
        self._image, run_time = self.segmenter.run(self._const_image)
        self.tk.append_log("Time elapsed: %0.3f seconds", run_time)
        
411 412
        self._gt_segments = [None]*(max(self.segmenter.get_list_segments())+1)
        
413 414
        if refresh_image:
            self.tk.refresh_image(self._image)
415 416


417
    def select_extractors(self):
418
        """Open a dialog to select the collection of extractors.
419
        
420 421 422 423 424
        Raises
        ------
        IException 'Please select at least one extractor'
            If no extractor was selected.
        """
425 426 427 428 429 430
        title = "Selecting extractors"
        self.tk.write_log(title)

        current_config = extraction.get_extractor_config()
        
        def process_config():
431
            """Update the collection of extractors."""
432 433 434 435
            new_config = self.tk.get_config_and_destroy()

            self.extractors = [new_config[extractor].meta for extractor in new_config
                                if new_config[extractor].value == True ]
436
            
437
            if len(self.extractors) == 0:
438
                raise IException("Please select an extractor from the menu under Features Extraction> Select extractors! ")
439
            
440 441 442 443 444 445
            self.tk.append_log("\nConfig updated:\n%s", 
                                '\n'.join(["%s: %s" % (new_config[extractor].label, "on" if new_config[extractor].value==True else "off")
                                            for extractor in new_config]))
            extraction.set_extractor_config(new_config)

        self.tk.dialogue_select(title, current_config, process_config)
446 447
        
    def run_extractors(self):
448 449
        """Perform a feature extraction on all images of dataset, using the current collection of extractors.
        """
450
        self.tk.write_log("Running extractors on all images in %s", self.dataset)
451 452
        self.tk._root.update_idletasks()
        fextractor = FeatureExtractor(self.extractors,self.tk)
453 454
        self.tk.append_log("%s", '\n'.join([extraction._extractor_list[extractor].label for extractor in extraction._extractor_list
                                                if extraction._extractor_list[extractor].value == True ]))
455
        
456
        output_file, run_time = fextractor.extract_all(self.dataset, "training")
457 458
        self.tk.append_log("\nOutput file saved in %s", output_file)
        self.tk.append_log("Time elapsed: %0.3f seconds", run_time)
459 460
        
        if self.classifier: self.classifier.reset()
461

462 463 464 465 466
    def run_extract_frame(self):
        self.tk.write_log("Running extract frames from videos")
        extract_frame=ExtractFM()
        extract_frame.run(self.tk)

467
    def select_classifier(self):
468 469 470 471 472 473 474
        """Open a dialog to select the classifier.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
475
        if self.classifier is None:
476
            raise IException("Classifier not found! Select from the menu the option Training>Choose Classifier!")
477 478 479 480 481
        
        title = "Choosing a classifier"
        self.tk.write_log(title)

        current_config = classification.get_classifier_config()
482

483 484
        
        def process_config():
485
            """Update the current classifier."""
486
            new_config = self.tk.get_config_and_destroy()
Geazy Menezes's avatar
Geazy Menezes committed
487
            
488 489 490 491 492 493 494 495 496
            self.classifier = [new_config[classifier].meta for classifier in new_config
                                if new_config[classifier].value == True ][0]()

            self.tk.append_log("\nClassifier: %s\n%s", str(self.classifier.get_name()), str(self.classifier.get_summary_config()))
            classification.set_classifier_config(new_config)

        self.tk.dialogue_choose_one(title, current_config, process_config)
        
    def configure_classifier(self):
497 498 499 500 501 502 503
        """Set the configuration of current classifier.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
504
        if self.classifier is None:
505
            raise IException("Classifier not found! Select from the menu the option Training>Choose Classifier!")
506 507 508 509 510 511 512 513 514 515 516
        
        title = "Configuring %s" % self.classifier.get_name()
        self.tk.write_log(title)

        current_config = self.classifier.get_config()
        
        def process_config():
            new_config = self.tk.get_config_and_destroy()

            self.classifier.set_config(new_config)
            self.tk.append_log("\nConfig updated:\n%s", str(self.classifier.get_summary_config()))
517 518
            
            if self.classifier: self.classifier.reset()
519 520 521 522 523

        self.tk.dialogue_config(title, current_config, process_config)
    
    
    def run_classifier(self):
524 525
        """Run the classifier on the current image.
        As result, paint the image with color corresponding to predicted class of all segment.
526

527 528 529 530 531 532 533
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        IException 'Image not found'
            If there's no image opened.
        """
534
        if self.classifier is None:
535 536
            raise IException("Classifier not found! Select from the menu the option Training>Choose Classifier!")

537
        if self._const_image is None:
538 539
            raise IException("Image not found!  Open an image to test, select in the menu the option File>Open Image!")

540 541
        self.tk.write_log("Running %s...", self.classifier.get_name())
        self.tk.append_log("\n%s", str(self.classifier.get_summary_config()))
542

543
        #self.classifier.set
544

545 546
        start_time = TimeUtils.get_time()

547
        # Perform a segmentation, if needed.
548 549 550
        list_segments = self.segmenter.get_list_segments()
        if len(list_segments) == 0:
            self.tk.append_log("Running %s... (%0.3f seconds)", self.segmenter.get_name(), (TimeUtils.get_time() - start_time))
551

552
            self._image, _ = self.segmenter.run(self._const_image)
553
            self.tk.refresh_image(self._image)
554
            list_segments = self.segmenter.get_list_segments()
555
            self._gt_segments = [None]*(max(list_segments)+1)
556

557
        #  New and optimized classification
558
        tmp = ".tmp"
559
        File.remove_dir(File.make_path(self.dataset, tmp))
560

561
        self.tk.append_log("Generating test images... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
562

563
        len_segments = {}
564 565 566 567 568 569 570 571 572 573 574

        print("Wait to complete processes all images!")
        with tqdm(total=len(list_segments)) as pppbar:
            for idx_segment in list_segments:
                segment, size_segment, idx_segment = self.segmenter.get_segment(self, idx_segment=idx_segment)[:-1]
                # Problem here! Dataset removed.
                filepath = File.save_only_class_image(segment, self.dataset, tmp, self._image_name, idx_segment)
                len_segments[idx_segment] = size_segment
                pppbar.update(1)
            pppbar.close()

575

576
        # Perform the feature extraction of all segments in image ( not applied to ConvNets ).
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
577
        if self.classifier.must_extract_features():
578 579
            self.tk.append_log("Running extractors on test images... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
            fextractor = FeatureExtractor(self.extractors)
580
            output_file, _ = fextractor.extract_all(self.dataset, "test", dirs=[tmp])
581

582
        self.tk.append_log("Running classifier on test data... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
583 584

        # Get the label corresponding to predict class for each segment of image.
585 586
        labels = self.classifier.classify(self.dataset, test_dir=tmp, test_data="test.arff", image=self._const_image)
        File.remove_dir(File.make_path(self.dataset, tmp))
587

588 589 590
        # Result is the class for each superpixel
        if type(labels) is types.ListType:
            self.tk.append_log("Painting segments... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
591

592 593 594
            # If ground truth mode, show alternative results
            if self._ground_truth == True:
                return self._show_ground_truth(list_segments, len_segments, labels, start_time)
595

596 597
            # Create a popup with results of classification.
            popup_info = "%s\n" % str(self.classifier.get_summary_config())
598

599 600
            len_total = sum([len_segments[idx] for idx in len_segments])
            popup_info += "%-16s%-16s%0.2f%%\n" % ("Total", str(len_total), (len_total*100.0)/len_total)
601

602 603 604 605 606
            # Paint the image.
            self._mask_image = np.zeros(self._const_image.shape[:-1], dtype="uint8")
            height, width, channels = self._image.shape
            self.class_color = np.zeros((height,width,3), np.uint8)
            for (c, cl) in enumerate(self.classes):
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
607
                idx_segment = [ list_segments[idx] for idx in range(0, len(labels)) if cl["name"].value == labels[idx] or c == labels[idx]]
608 609 610 611 612
                if len(idx_segment) > 0:
                    self._image, _ = self.segmenter.paint_segment(self._image, cl["color"].value, idx_segment=idx_segment, border=False)
                    for idx in idx_segment:
                        self._mask_image[self.segmenter._segments == idx] = c
                        self.class_color[self.segmenter._segments == idx] = X11Colors.get_color(cl["color"].value)
613

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
                len_classes = sum([len_segments[idx] for idx in idx_segment])
                popup_info += "%-16s%-16s%0.2f%%\n" % (cl["name"].value, str(len_classes), (len_classes*100.0)/len_total)


            self.tk.refresh_image(self._image)
            self.tk.popup(popup_info)
        else:
            # Result is an image
            self._mask_image = labels
            height, width, channels = self._image.shape
            self.class_color = np.zeros((height,width,3), np.uint8)

            for (c, cl) in enumerate(self.classes):
                self.class_color[labels == c] = X11Colors.get_color(cl["color"].value)

            self._image = cv2.addWeighted(self._const_image, 0.7, self.class_color, 0.3, 0)
            self.tk.refresh_image(self._image)
631

632

633
        end_time = TimeUtils.get_time()
634

635 636
        self.tk.append_log("\nClassification finished")
        self.tk.append_log("Time elapsed: %0.3f seconds", (end_time - start_time))
637
        gc.collect()
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
638 639 640

    def run_training(self):
        start_time = TimeUtils.get_time()
641
        
642 643 644
        # Training do not need an image opened (consider removing these two lines)
        #      if self._const_image is None:
        #          raise IException("Image not found")
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
645 646 647 648 649 650 651 652 653 654
        
        if self.classifier.must_train():
            
            if self.classifier.must_extract_features():
                self.tk.append_log("Creating training data... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
                fextractor = FeatureExtractor(self.extractors)
                output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
        
            self.tk.append_log("Training classifier...")
            
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
655
            self.classifier.train(self.dataset, "training")
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
656 657 658 659

            self.tk.append_log("DONE (%0.3f seconds)",  (TimeUtils.get_time() - start_time))
        
        self._image = self._const_image
660
        self.has_trained=True
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
661

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
    
    def _show_ground_truth(self, list_segments, len_segments, labels, start_time):
        """Paint only wrong classified segments and show ground truth confusion matrix.
        
        Parameters
        ----------
        list_segments : list of integer
            List of index segments.
        len_segments : list of integer
            List of segments sizes.
        labels : list of string
            List of predicted class name for each segment.
        start_time : floating point
            Start time of classification.
        """
        classes = list(set(labels))
        classes.sort()
        
        n_segments = len(labels)
        spx_matrix = np.zeros((len(classes), len(classes)), np.int) 
        px_matrix = np.zeros((len(classes), len(classes)), np.int) 

        # Create the confusion matrix and paint wrong classified segments individually.
        for idx_segment in list_segments:
            if self._gt_segments[idx_segment] is not None:
                gt_class = classes.index(self._gt_segments[idx_segment])
                predicted_class = classes.index(labels[idx_segment])
                
                spx_matrix[ gt_class ][ predicted_class ] += 1
                px_matrix[ gt_class ][ predicted_class ] += len_segments[idx_segment]
        
                if gt_class != predicted_class:
                    self._image, _ = self.segmenter.paint_segment(self._image, self.get_class_by_name(labels[idx_segment])["color"].value, idx_segment=[idx_segment], border=False)
        
        # Create a popup with results of classification.
        popup_info = "%s\n" % str(self.classifier.get_summary_config())
        popup_info += Classifier.confusion_matrix(classes, spx_matrix, "Superpixels")
        popup_info += Classifier.confusion_matrix(classes, px_matrix, "PixelSum")
        
        self.tk.refresh_image(self._image)
        self.tk.popup(popup_info)
703

704 705 706 707 708
        end_time = TimeUtils.get_time()
            
        self.tk.append_log("\nClassification finished")
        self.tk.append_log("Time elapsed: %0.3f seconds", (end_time - start_time))
        
709

710 711 712 713 714
    def toggle_ground_truth(self):
        """Enable/disable ground truth mode.
        """
        self._ground_truth = not self._ground_truth
        
715
    def cross_validation(self):
716 717 718 719 720 721 722
        """Run a cross validation on all generated segments in image dataset.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
723
        if self.classifier is None:
724
            raise IException("Classifier not found! Select from the menu the option Training>Choose Classifier!")
725 726 727 728 729 730 731 732 733 734 735 736 737 738
        
        if self.classifier.must_train():
            self.tk.write_log("Creating training data...")
            
            fextractor = FeatureExtractor(self.extractors)
            output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
            self.classifier.train(self.dataset, "training")
        
        self.tk.write_log("Running Cross Validation on %s...", self.classifier.get_name())
        self.tk.append_log("\n%s", str(self.classifier.get_summary_config()))
        
        popup_info = self.classifier.cross_validate()
        self.tk.append_log("Cross Validation finished")
        self.tk.popup(popup_info)
739 740
        
    def experimenter_all(self):
741 742 743 744 745 746 747
        """Perform a test in all availabel classifiers e show the results.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
748
        if self.classifier is None:
749
            raise IException("Classifier not found! Select from the menu the option Training>Choose Classifier!")
750 751 752 753
        
        if self.tk.ask_ok_cancel("Experimenter All", "This may take several minutes to complete. Are you sure?"):
            if self.classifier.must_train():
                self.tk.write_log("Creating training data...")
754

755 756 757 758 759 760 761 762 763
                fextractor = FeatureExtractor(self.extractors)
                output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
                self.classifier.train(self.dataset, "training")
                
            self.tk.write_log("Running Experimenter All on %s...", self.classifier.get_name())
            
            popup_info = self.classifier.experimenter()
            self.tk.append_log("\nExperimenter All finished")
            self.tk.popup(popup_info)
764 765


766
    def about(self):
767
        self.tk.show_info("Pynovisao\n\nVersion 1.0.0\n\nAuthors:\nAdair da Silva Oliveira Junior\nAlessandro dos Santos Ferreira\nDiego Andre Sant Ana\nDiogo Nunes Goncalves\nEverton Castelao Tetila\nFelipe Silveira\nGabriel Kirsten Menezes\nGilberto Astolfi\nHemerson Pistori\nNicolas Alessandro de Souza Belete")
768 769
        
            
770
    def func_not_available(self):
771
        """Use this method to bind menu options not available."""
772
        self.tk.write_log("This functionality is not available right now.")
773

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
    def assign_using_labeled_image(self, imagename = None, refresh_image=True):
        """Open a new image.

        Parameters
        ----------
        imagename : string, optional, default = None
            Filepath of image. If not informed open a dialog to choose.
        """

        if len(self.segmenter.get_list_segments()) == 0:
            self.tk.write_log("Error: Image not segmented")
            return

        if self._image is None:
            self.tk.write_log("Error: Open the image to be targeted")
            return

        if imagename is None:
            imagename = self.tk.utils.ask_image_name()

        if imagename:
            self._image_gt = File.open_image_lut(imagename)
            self._image_gt_name = File.get_filename(imagename)

            self.tk.write_log("Opening %s...", self._image_gt_name)

            qtd_classes = len(self.classes)
            qtd_superpixel = len(self.segmenter.get_list_segments())

        tam_gt = self._image_gt.shape
        tam_im = self._image.shape
        if len(tam_gt) > 2:
            self.tk.write_log("Color image is not supported. You must open a gray-scale image")
            return

        if tam_gt[0] != tam_im[0] or tam_gt[1] != tam_im[1]:
            self.tk.write_log("Images with different sizes")
            return
            
        #hist_classes_superpixels = np.zeros((qtd_superpixel, qtd_classes), np.int)      
    
        #for i in range(0, tam_gt[0]):
        #    for j in range(0, tam_gt[1]):          
        #        class_pixel = self._image_gt[i,j]
        #        if class_pixel > qtd_classes:
        #            self.tk.write_log("There is no class for the pixel [%d,%d] = %d on the image", i, j, class_pixel)
        #        else:
        #            #segment, size_segment, idx_segment, run_time = self.segmenter.get_segment(px = j, py = i)
        #            idx_segment = self.segmenter._segments[i, j]
        #            hist_classes_superpixels[idx_segment, class_pixel] = hist_classes_superpixels[idx_segment, class_pixel] + 1
        #    if i % 10 == 0:
        #        self.tk.write_log("Annotating row %d of %d", i, tam_gt[0])
                
        qtd_bad_superpixels = 0
        
        for idx_segment in range(0, qtd_superpixel):
            hist_classes_superpixels = np.histogram(self._image_gt[self.segmenter._segments == idx_segment], bins=range(0,len(self.classes)+1))[0]

            idx_class = np.argmax(hist_classes_superpixels)
            sum_vector = np.sum(hist_classes_superpixels)
            if refresh_image:
                self._image, run_time = self.segmenter.paint_segment(self._image, self.classes[idx_class]["color"].value, idx_segment = [idx_segment])
            #self.tk.append_log("posicao maior = %x  --  soma vetor %d", x, sum_vector)
            if hist_classes_superpixels[idx_class]/sum_vector < 0.5:
                qtd_bad_superpixels = qtd_bad_superpixels + 1

            if self._ground_truth == True:
                self._gt_segments[idx_segment] = self.classes[self._current_class]["name"].value

            elif self._dataset_generator == True:
                if idx_segment % 10 == 0:
                    self.tk.write_log("Saving %d of %d", (idx_segment+1), qtd_superpixel)

                segment, size_segment, idx_segment, run_time = self.segmenter.get_segment(idx_segment = idx_segment)
                filepath = File.save_class_image(segment, self.dataset, self.classes[idx_class]["name"].value, self._image_name, idx_segment)
                if filepath:
                    self.tk.append_log("\nSegment saved in %s", filepath)

        self.tk.refresh_image(self._image)
        self.tk.write_log("%d bad annotated superpixels of %d superpixel (%0.2f)", qtd_bad_superpixels, qtd_superpixel, (float(qtd_bad_superpixels)/qtd_superpixel)*100)



    def run_segmenter_folder(self, foldername=None):

        if foldername is None:
            foldername = self.tk.utils.ask_directory()

        valid_images_extension = ['.jpg', '.png', '.gif', '.jpeg', '.tif']

        fileimages = [name for name in os.listdir(foldername)
                    if os.path.splitext(name)[-1].lower() in valid_images_extension]

        for (i,file) in enumerate(fileimages):
            path_file = os.path.join(foldername, file)
            self.open_image(path_file)
            self.run_segmenter(refresh_image=False)
            label_image = (os.path.splitext(file)[-2] + '_json')
            self.assign_using_labeled_image(os.path.join(foldername, label_image, 'label.png'), refresh_image=False)
            self.tk.write_log("%d of %d images", i, len(fileimages))

    def run_classifier_folder(self, foldername=None):

        if self.classifier is None:
878
            raise IException("Classifier not found! Select from the menu the option Training>Choose Classifier!")
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945