pynovisao.py 37.2 KB
Newer Older
1 2 3 4
#!/usr/bin/python
# -*- coding: utf-8 -*-
#
"""
5 6 7 8
    This file must contain the implementation code for all actions of pynovisao.
    
    Name: pynovisao.py
    Author: Alessandro dos Santos Ferreira ( santosferreira.alessandro@gmail.com )
9 10 11
"""

from collections import OrderedDict
12
import numpy as np
13
import os
14
import interface
15 16
import types
import cv2
17
from interface.interface import InterfaceException as IException
18
from PIL import Image
19

20
import segmentation
21
import extraction
22
from extraction import FeatureExtractor
23
import classification
24
from classification import Classifier
25

26 27
import util
from util.config import Config
28
from util.file_utils import File
29
from util.utils import TimeUtils
30 31
from util.utils import MetricUtils
from util.x11_colors import X11Colors
32

Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
33

34
class Act(object):
35
    """Store all actions of Pynovisao."""
36

Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
37
    def __init__(self, tk, args):
38 39 40 41 42 43 44 45 46
        """Constructor.

        Parameters
        ----------
        tk : Interface
            Pointer to interface that handles UI.
        args : Dictionary
            Arguments of program.
        """
47
        self.tk = tk
48 49 50
        
        self.segmenter = [segmentation._segmenter_list[segmenter].meta for segmenter in segmentation._segmenter_list
                            if segmentation._segmenter_list[segmenter].value == True ][0]()
51 52 53
        
        self.extractors = [extraction._extractor_list[extractor].meta for extractor in extraction._extractor_list
                            if extraction._extractor_list[extractor].value == True ]
54 55 56 57 58 59
        
        try:
            self.classifier = [classification._classifier_list[classifier].meta for classifier in classification._classifier_list
                                if classification._classifier_list[classifier].value == True ][0]()
        except:
            self.classifier = None
60

61 62
        self._image = None
        self._const_image = None
63
        self._mask_image = None
64
        self._image_name = None
65
                    
66 67
        self._init_dataset(args["dataset"])
        self._init_classes(args["classes"], args["colors"])
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
68

69
        self._dataset_generator = True
70 71
        self._ground_truth = False
        self._gt_segments = None
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
72
        self.weight_path = None
73

74
    
75
    def _init_dataset(self, directory):
76 77 78 79 80 81 82
        """Initialize the directory of image dataset.

        Parameters
        ----------
        directory : string
            Path to directory.
        """
83 84 85 86
        if(directory[-1] == '/'):
            directory = directory[:-1]
            
        self.dataset = directory
87
        File.create_dir(self.dataset)
88
    
89
    def _init_classes(self, classes = None, colors = None):
90 91 92 93 94 95 96 97 98 99
        """Initialize the classes of dataset.

        Parameters
        ----------
        classes : list of string, optional, default = None
            List of classes. If not informed, the metod set as classes all classes in dataset. 
            If there's no classes in dataset, adds two default classes.
        colors : list of string, optional, default = None
            List de colors representing the color of classe, in same order. If not informed, chooses a color at random.
        """
100
        self.classes = []
101 102 103 104 105 106 107 108 109 110 111 112 113 114

        dataset_description_path = File.make_path(self.dataset, '.dataset_description.txt')

        if os.path.exists(dataset_description_path):
            colors = []
            classes = []
            file = open(dataset_description_path, "r") 
            for line in file:
                class_info = line.replace("\n", "").split(",")
                classes.append(class_info[0])
                colors.append(class_info[1])                 
        else:
            classes = sorted(File.list_dirs(self.dataset)) if classes is None else classes.split()
            colors = [] if colors is None else colors.split()
115 116 117 118 119 120 121

        if(len(classes) > 0):
            for i in range(0, len(classes)):
                self.add_class(dialog = False, name=classes[i], color=colors[i] if i < len(colors) else None)
        else:
            self.add_class(dialog = False, color='Green')
            self.add_class(dialog = False, color='Yellow')
122
                
123
        self._current_class = 0
124
        
125

126
    def open_image(self, imagename = None):
127 128 129 130 131 132 133
        """Open a new image.

        Parameters
        ----------
        imagename : string, optional, default = None
            Filepath of image. If not informed open a dialog to choose.
        """
134 135
        
        def onclick(event):
136
            """Binds dataset generator event to click on image."""
137
            if event.xdata != None and event.ydata != None and int(event.ydata) != 0 and self._dataset_generator == True:
138 139
                x = int(event.xdata)
                y = int(event.ydata)
140 141 142 143 144 145 146
                self.tk.write_log("Coordinates: x = %d y = %d", x, y)
                
                segment, size_segment, idx_segment, run_time = self.segmenter.get_segment(x, y)
                
                if size_segment > 0:
                    self.tk.append_log("\nSegment = %d: %0.3f seconds", idx_segment, run_time)
                    
147
                    self._image, run_time = self.segmenter.paint_segment(self._image, self.classes[self._current_class]["color"].value, x, y)
148
                    self.tk.append_log("Painting segment: %0.3f seconds", run_time)
149
                    self.tk.refresh_image(self._image)
150
                    
151 152 153 154
                    if self._ground_truth == True:
                        self._gt_segments[idx_segment] = self.classes[self._current_class]["name"].value

                    elif self._dataset_generator == True:
155
                        filepath = File.save_class_image(segment, self.dataset, self.classes[self._current_class]["name"].value, self._image_name, idx_segment)
156 157
                        if filepath:
                            self.tk.append_log("\nSegment saved in %s", filepath)
158 159 160
        
        if imagename is None:
            imagename = self.tk.utils.ask_image_name()
161 162

        if imagename:
163 164
            self._image = File.open_image(imagename)
            self._image_name = File.get_filename(imagename)
165

166 167 168
            self.tk.write_log("Opening %s...", self._image_name)
            self.tk.add_image(self._image, self._image_name, onclick)
            self._const_image = self._image
169
            
170
            self.segmenter.reset()
171
            self._gt_segments = None
172

173
        
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
174 175 176 177

    def open_weight(self):
        """Open a new weight."""
        self.weight_path = self.tk.utils.ask_weight_name()
178
        self.classifier.weight_path = self.weight_path
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
179
        
180
    def restore_image(self):
181 182
        """Refresh the image and clean the segmentation.
        """
183 184 185 186
        if self._const_image is not None:
            self.tk.write_log("Restoring image...")
            self.tk.refresh_image(self._const_image)
            
187
            self.segmenter.reset()
188
            self._gt_segments = None
189 190
        
    def close_image(self):
191
        """Close the image.
192
        
193 194 195 196 197
        Raises
        ------
        IException 'Image not found'
            If there's no image opened.
        """
198
        if self._const_image is None:
199 200 201 202
            raise IException("Image not found")
        
        if self.tk.close_image():
            self.tk.write_log("Closing image...")
203
            self._const_image = None
204
            self._image = None
205 206

    def add_class(self, dialog = True, name = None, color = None):
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
        """Add a new class.

        Parameters
        ----------
        dialog : boolean, optional, default = True
            If true open a config dialog to add the class.
        name : string, optional, default = None
            Name of class. If not informed set the name 'Class_nn' to class.
        color : string, optional, default = None
            Name of color in X11Color format, representing the class. It will used to paint the segments of class.
            If not informed choose a color at random.
            
        Raises
        ------
        IException 'You have reached the limite of %d classes'
            If you already have created self.tk.MAX_CLASSES classes.
        """
224 225 226
        n_classes = len(self.classes)
        if n_classes >= self.tk.MAX_CLASSES:
            raise IException("You have reached the limite of %d classes" % self.tk.MAX_CLASSES)
227
                
228
        def edit_class(index):
229
            """Calls method that edit the class."""
230
            self.edit_class(index)
231 232
            
        def update_current_class(index):
233
            """Calls method that update the class."""
234
            self.update_current_class(index)
235 236
        
        def process_config():
237
            """Add the class and refresh the panel of classes."""
238
            new_class = self.tk.get_config_and_destroy()
239
            new_class["name"].value = '_'.join(new_class["name"].value.split())
240 241 242

            self.classes.append( new_class )
            self.tk.write_log("New class: %s", new_class["name"].value)
243
            self.tk.refresh_panel_classes(self.classes, self._current_class)
244
            
245 246
        if name is None:
            name = "Class_%02d" % (n_classes+1)
247
        if color is None:
248
            color = util.X11Colors.random_color()
249 250
            
        class_config = OrderedDict()
251
        class_config["name"] = Config(label="Name", value=name, c_type=str)
252
        class_config["color"] = Config(label="Color (X11 Colors)", value=color, c_type='color')
253 254
        class_config["callback"] = Config(label=None, value=update_current_class, c_type=None, hidden=True)
        class_config["callback_color"] = Config(label=None, value=edit_class, c_type=None, hidden=True)
255 256 257 258 259 260 261
        class_config["args"] = Config(label=None, value=n_classes, c_type=int, hidden=True)
        
        if dialog == False:
            self.classes.append( class_config )
            return 

        title = "Add a new classe"
262 263 264
        self.tk.dialogue_config(title, class_config, process_config)        
      

265
    def edit_class(self, index):
266 267 268 269 270 271 272
        """Edit a class.

        Parameters
        ----------
        index : integer.
            Index of class in list self.classes.
        """
273
        def process_update(index):
274
            """Update the class."""
275
            updated_class = self.tk.get_config_and_destroy()
276
            updated_class["name"].value = '_'.join(updated_class["name"].value.split())
277 278 279
            
            self.classes[index] = updated_class
            self.tk.write_log("Class updated: %s", updated_class["name"].value)
280
            self.tk.refresh_panel_classes(self.classes, self._current_class)
281 282 283 284 285 286
        
        current_config = self.classes[index]
            
        title = "Edit class %s" % current_config["name"].value
        self.tk.dialogue_config(title, current_config, lambda *_ : process_update(index))
            
287
    def update_current_class(self, index):
288 289
        """Update the current class.
        """
290
        self._current_class = index
291 292
        
    def get_class_by_name(self, name):
293 294 295 296
        """Return the index for class.
        
        Parameters
        ----------
297
        name : string
298 299 300 301
            Name of class.
            
        Returns
        -------
302
        index : integer
303 304 305 306 307 308 309
            Index of class in list self.classes.

        Raises
        ------
        Exception 'Class not found'
            If name not found in self.classes.
        """
310 311 312 313 314 315
        name = name.strip()
        
        for cl in self.classes:
            if cl["name"].value == name:
                return cl
        raise Exception("Class not found")
316

317
        
318
    def set_dataset_path(self):
319 320
        """Open a dialog to choose the path to directory of image dataset.
        """
321 322
        directory = self.tk.utils.ask_directory(default_dir = self.dataset)
        if directory:
323
            self._init_dataset(directory)
324 325
            self.tk.write_log("Image dataset defined: %s", self.dataset)
            
326
            self._init_classes()
327
            self.tk.refresh_panel_classes(self.classes)
328
            
329 330
            if self.classifier: self.classifier.reset()
            
331
    def toggle_dataset_generator(self):
332 333
        """Enable/disable the dataset generator on click in image.
        """
334
        self._dataset_generator = not self._dataset_generator
335

336 337
            
    def select_segmenter(self):
338 339
        """Open a dialog to choose the segmenter.
        """
340 341
        title = "Choosing a segmenter"
        self.tk.write_log(title)
342

343
        current_config = segmentation.get_segmenter_config()
344
        
345
        def process_config():
346
            """Update the current segmenter."""
347
            new_config = self.tk.get_config_and_destroy()
348

349 350 351
            self.segmenter = [new_config[segmenter].meta for segmenter in new_config
                                if new_config[segmenter].value == True ][0]()

352
            self.tk.append_log("\nSegmenter: %s\n%s", str(self.segmenter.get_name()), str(self.segmenter.get_summary_config()))
353 354 355 356 357
            segmentation.set_segmenter_config(new_config)

        self.tk.dialogue_choose_one(title, current_config, process_config)

    def config_segmenter(self):
358 359
        """Open a dialog to configure the current segmenter.
        """
360 361 362 363 364 365
        title = "Configuring %s" % self.segmenter.get_name()
        self.tk.write_log(title)

        current_config = self.segmenter.get_config()
        
        def process_config():
366
            """Update the configs of current segmenter."""
367 368 369
            new_config = self.tk.get_config_and_destroy()

            self.segmenter.set_config(new_config)
370
            self.tk.append_log("\nConfig updated:\n%s", str(self.segmenter.get_summary_config()))
371
            self.segmenter.reset()
372 373

        self.tk.dialogue_config(title, current_config, process_config)
374
        
375
    def run_segmenter(self, refresh_image=True):
376
        """Do the segmentation of image, using the current segmenter.
377
        
378 379 380 381 382
        Raises
        ------
        IException 'Image not found'
            If there's no image opened.
        """
383 384 385
        if self._const_image is None:
            raise IException("Image not found")
        
386
        self.tk.write_log("Running %s...", self.segmenter.get_name())
387 388 389 390 391

        self.tk.append_log("\nConfig: %s", str(self.segmenter.get_summary_config()))
        self._image, run_time = self.segmenter.run(self._const_image)
        self.tk.append_log("Time elapsed: %0.3f seconds", run_time)
        
392 393
        self._gt_segments = [None]*(max(self.segmenter.get_list_segments())+1)
        
394 395
        if refresh_image:
            self.tk.refresh_image(self._image)
396 397


398
    def select_extractors(self):
399
        """Open a dialog to select the collection of extractors.
400
        
401 402 403 404 405
        Raises
        ------
        IException 'Please select at least one extractor'
            If no extractor was selected.
        """
406 407 408 409 410 411
        title = "Selecting extractors"
        self.tk.write_log(title)

        current_config = extraction.get_extractor_config()
        
        def process_config():
412
            """Update the collection of extractors."""
413 414 415 416
            new_config = self.tk.get_config_and_destroy()

            self.extractors = [new_config[extractor].meta for extractor in new_config
                                if new_config[extractor].value == True ]
417 418 419
                                
            if len(self.extractors) == 0:
                raise IException("Please select at least one extractor")
420 421 422 423 424 425 426

            self.tk.append_log("\nConfig updated:\n%s", 
                                '\n'.join(["%s: %s" % (new_config[extractor].label, "on" if new_config[extractor].value==True else "off")
                                            for extractor in new_config]))
            extraction.set_extractor_config(new_config)

        self.tk.dialogue_select(title, current_config, process_config)
427 428
        
    def run_extractors(self):
429 430
        """Perform a feature extraction on all images of dataset, using the current collection of extractors.
        """
431
        self.tk.write_log("Running extractors on all images in %s", self.dataset)
432

433 434 435
        fextractor = FeatureExtractor(self.extractors)
        self.tk.append_log("%s", '\n'.join([extraction._extractor_list[extractor].label for extractor in extraction._extractor_list
                                                if extraction._extractor_list[extractor].value == True ]))
436
        
437
        output_file, run_time = fextractor.extract_all(self.dataset, "training")
438 439
        self.tk.append_log("\nOutput file saved in %s", output_file)
        self.tk.append_log("Time elapsed: %0.3f seconds", run_time)
440 441
        
        if self.classifier: self.classifier.reset()
442

443 444
        
    def select_classifier(self):
445 446 447 448 449 450 451
        """Open a dialog to select the classifier.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
452
        if self.classifier is None:
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
453
            raise IException("Classifier not found!")
454 455 456 457 458
        
        title = "Choosing a classifier"
        self.tk.write_log(title)

        current_config = classification.get_classifier_config()
459

460 461
        
        def process_config():
462
            """Update the current classifier."""
463 464 465 466 467 468 469 470 471 472 473
            new_config = self.tk.get_config_and_destroy()

            self.classifier = [new_config[classifier].meta for classifier in new_config
                                if new_config[classifier].value == True ][0]()

            self.tk.append_log("\nClassifier: %s\n%s", str(self.classifier.get_name()), str(self.classifier.get_summary_config()))
            classification.set_classifier_config(new_config)

        self.tk.dialogue_choose_one(title, current_config, process_config)
        
    def configure_classifier(self):
474 475 476 477 478 479 480
        """Set the configuration of current classifier.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
481
        if self.classifier is None:
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
482
            raise IException("Classifier not found!")
483 484 485 486 487 488 489 490 491 492 493
        
        title = "Configuring %s" % self.classifier.get_name()
        self.tk.write_log(title)

        current_config = self.classifier.get_config()
        
        def process_config():
            new_config = self.tk.get_config_and_destroy()

            self.classifier.set_config(new_config)
            self.tk.append_log("\nConfig updated:\n%s", str(self.classifier.get_summary_config()))
494 495
            
            if self.classifier: self.classifier.reset()
496 497 498 499 500

        self.tk.dialogue_config(title, current_config, process_config)
    
    
    def run_classifier(self):
501 502 503 504 505 506 507 508 509 510
        """Run the classifier on the current image.
        As result, paint the image with color corresponding to predicted class of all segment.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        IException 'Image not found'
            If there's no image opened.
        """
511
        if self.classifier is None:
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
512
            raise IException("Classifier not found!")
513 514 515 516 517 518 519 520 521
        
        if self._const_image is None:
            raise IException("Image not found")
        
        self.tk.write_log("Running %s...", self.classifier.get_name())
        self.tk.append_log("\n%s", str(self.classifier.get_summary_config()))
        
        start_time = TimeUtils.get_time()

522
        # Perform a segmentation, if needed.
523 524 525 526 527 528 529
        list_segments = self.segmenter.get_list_segments()
        if len(list_segments) == 0:
            self.tk.append_log("Running %s... (%0.3f seconds)", self.segmenter.get_name(), (TimeUtils.get_time() - start_time))
            
            self._image, _ = self.segmenter.run(self._const_image)
            self.tk.refresh_image(self._image)        
            list_segments = self.segmenter.get_list_segments()
530
            self._gt_segments = [None]*(max(list_segments)+1)
531 532
        
        #  New and optimized classification
533
        tmp = ".tmp"
534
        File.remove_dir(File.make_path(self.dataset, tmp))
535

536 537 538 539 540
        self.tk.append_log("Generating test images... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
        
        len_segments = {}
        for idx_segment in list_segments:
            segment, size_segment, idx_segment = self.segmenter.get_segment(self, idx_segment=idx_segment)[:-1]
541
            
542
            filepath = File.save_class_image(segment, self.dataset, tmp, self._image_name, idx_segment)
543
            len_segments[idx_segment] = size_segment
544
            
545
        # Perform the feature extraction of all segments in image ( not applied to ConvNets ).
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
546 547
        if self.classifier.must_extract_features():
            self.tk.append_log("Running extractors on test images... (%0.3f seconds)", (TimeUtils.get_time() - start_time))            
548 549 550
            output_file, _ = fextractor.extract_all(self.dataset, "test", dirs=[tmp])
                
        self.tk.append_log("Running classifier on test data... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
551 552

        # Get the label corresponding to predict class for each segment of image.
553 554
        labels = self.classifier.classify(self.dataset, test_dir=tmp, test_data="test.arff", image=self._const_image)
        File.remove_dir(File.make_path(self.dataset, tmp))
555

556 557 558 559 560 561 562
        # Result is the class for each superpixel
        if type(labels) is types.ListType:
            self.tk.append_log("Painting segments... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
            
            # If ground truth mode, show alternative results
            if self._ground_truth == True:
                return self._show_ground_truth(list_segments, len_segments, labels, start_time)
563

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
            # Create a popup with results of classification.
            popup_info = "%s\n" % str(self.classifier.get_summary_config())
            
            len_total = sum([len_segments[idx] for idx in len_segments])
            popup_info += "%-16s%-16s%0.2f%%\n" % ("Total", str(len_total), (len_total*100.0)/len_total)
            
            # Paint the image.
            self._mask_image = np.zeros(self._const_image.shape[:-1], dtype="uint8")
            height, width, channels = self._image.shape
            self.class_color = np.zeros((height,width,3), np.uint8)
            for (c, cl) in enumerate(self.classes):
                idx_segment = [ list_segments[idx] for idx in range(0, len(labels)) if cl["name"].value == labels[idx]]
                if len(idx_segment) > 0:
                    self._image, _ = self.segmenter.paint_segment(self._image, cl["color"].value, idx_segment=idx_segment, border=False)
                    for idx in idx_segment:
                        self._mask_image[self.segmenter._segments == idx] = c
                        self.class_color[self.segmenter._segments == idx] = X11Colors.get_color(cl["color"].value)
                  
                len_classes = sum([len_segments[idx] for idx in idx_segment])
                popup_info += "%-16s%-16s%0.2f%%\n" % (cl["name"].value, str(len_classes), (len_classes*100.0)/len_total)


            self.tk.refresh_image(self._image)
            self.tk.popup(popup_info)
        else:
            # Result is an image
            self._mask_image = labels
            height, width, channels = self._image.shape
            self.class_color = np.zeros((height,width,3), np.uint8)

            for (c, cl) in enumerate(self.classes):
                self.class_color[labels == c] = X11Colors.get_color(cl["color"].value)

            self._image = cv2.addWeighted(self._const_image, 0.7, self.class_color, 0.3, 0)
            self.tk.refresh_image(self._image)
599 600

        
601 602 603 604
        end_time = TimeUtils.get_time()
            
        self.tk.append_log("\nClassification finished")
        self.tk.append_log("Time elapsed: %0.3f seconds", (end_time - start_time))
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
605 606 607

    def run_training(self):
        start_time = TimeUtils.get_time()
608
        
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
609 610 611 612 613 614 615 616 617 618 619 620
        if self._const_image is None:
            raise IException("Image not found")
        
        if self.classifier.must_train():
            
            if self.classifier.must_extract_features():
                self.tk.append_log("Creating training data... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
                fextractor = FeatureExtractor(self.extractors)
                output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
        
            self.tk.append_log("Training classifier...")
            
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
621
            self.classifier.train(self.dataset, "training")
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
622 623 624 625 626

            self.tk.append_log("DONE (%0.3f seconds)",  (TimeUtils.get_time() - start_time))
        
        self._image = self._const_image

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
    
    def _show_ground_truth(self, list_segments, len_segments, labels, start_time):
        """Paint only wrong classified segments and show ground truth confusion matrix.
        
        Parameters
        ----------
        list_segments : list of integer
            List of index segments.
        len_segments : list of integer
            List of segments sizes.
        labels : list of string
            List of predicted class name for each segment.
        start_time : floating point
            Start time of classification.
        """
        classes = list(set(labels))
        classes.sort()
        
        n_segments = len(labels)
        spx_matrix = np.zeros((len(classes), len(classes)), np.int) 
        px_matrix = np.zeros((len(classes), len(classes)), np.int) 

        # Create the confusion matrix and paint wrong classified segments individually.
        for idx_segment in list_segments:
            if self._gt_segments[idx_segment] is not None:
                gt_class = classes.index(self._gt_segments[idx_segment])
                predicted_class = classes.index(labels[idx_segment])
                
                spx_matrix[ gt_class ][ predicted_class ] += 1
                px_matrix[ gt_class ][ predicted_class ] += len_segments[idx_segment]
        
                if gt_class != predicted_class:
                    self._image, _ = self.segmenter.paint_segment(self._image, self.get_class_by_name(labels[idx_segment])["color"].value, idx_segment=[idx_segment], border=False)
        
        # Create a popup with results of classification.
        popup_info = "%s\n" % str(self.classifier.get_summary_config())
        popup_info += Classifier.confusion_matrix(classes, spx_matrix, "Superpixels")
        popup_info += Classifier.confusion_matrix(classes, px_matrix, "PixelSum")
        
        self.tk.refresh_image(self._image)
        self.tk.popup(popup_info)
668

669 670 671 672 673
        end_time = TimeUtils.get_time()
            
        self.tk.append_log("\nClassification finished")
        self.tk.append_log("Time elapsed: %0.3f seconds", (end_time - start_time))
        
674

675 676 677 678 679
    def toggle_ground_truth(self):
        """Enable/disable ground truth mode.
        """
        self._ground_truth = not self._ground_truth
        
680
    def cross_validation(self):
681 682 683 684 685 686 687
        """Run a cross validation on all generated segments in image dataset.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
688
        if self.classifier is None:
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
689
            raise IException("Classifier not found!")
690 691 692 693 694 695 696 697 698 699 700 701 702 703
        
        if self.classifier.must_train():
            self.tk.write_log("Creating training data...")
            
            fextractor = FeatureExtractor(self.extractors)
            output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
            self.classifier.train(self.dataset, "training")
        
        self.tk.write_log("Running Cross Validation on %s...", self.classifier.get_name())
        self.tk.append_log("\n%s", str(self.classifier.get_summary_config()))
        
        popup_info = self.classifier.cross_validate()
        self.tk.append_log("Cross Validation finished")
        self.tk.popup(popup_info)
704 705
        
    def experimenter_all(self):
706 707 708 709 710 711 712
        """Perform a test in all availabel classifiers e show the results.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
713
        if self.classifier is None:
Gabriel Kirsten's avatar
 
Gabriel Kirsten committed
714
            raise IException("Classifier not found!")
715 716 717 718 719 720 721 722 723 724 725 726 727 728
        
        if self.tk.ask_ok_cancel("Experimenter All", "This may take several minutes to complete. Are you sure?"):
            if self.classifier.must_train():
                self.tk.write_log("Creating training data...")
                
                fextractor = FeatureExtractor(self.extractors)
                output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
                self.classifier.train(self.dataset, "training")
                
            self.tk.write_log("Running Experimenter All on %s...", self.classifier.get_name())
            
            popup_info = self.classifier.experimenter()
            self.tk.append_log("\nExperimenter All finished")
            self.tk.popup(popup_info)
729 730


731 732 733 734
    def about(self):
        self.tk.show_info("Pynovisao\n\nVersion 1.0.0\n\nAuthors:\nAlessandro Ferreira\nHemerson Pistori")
        
            
735
    def func_not_available(self):
736
        """Use this method to bind menu options not available."""
737
        self.tk.write_log("This functionality is not available right now.")
738

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
    def assign_using_labeled_image(self, imagename = None, refresh_image=True):
        """Open a new image.

        Parameters
        ----------
        imagename : string, optional, default = None
            Filepath of image. If not informed open a dialog to choose.
        """

        if len(self.segmenter.get_list_segments()) == 0:
            self.tk.write_log("Error: Image not segmented")
            return

        if self._image is None:
            self.tk.write_log("Error: Open the image to be targeted")
            return

        if imagename is None:
            imagename = self.tk.utils.ask_image_name()

        if imagename:
            self._image_gt = File.open_image_lut(imagename)
            self._image_gt_name = File.get_filename(imagename)

            self.tk.write_log("Opening %s...", self._image_gt_name)

            qtd_classes = len(self.classes)
            qtd_superpixel = len(self.segmenter.get_list_segments())

        tam_gt = self._image_gt.shape
        tam_im = self._image.shape
        if len(tam_gt) > 2:
            self.tk.write_log("Color image is not supported. You must open a gray-scale image")
            return

        if tam_gt[0] != tam_im[0] or tam_gt[1] != tam_im[1]:
            self.tk.write_log("Images with different sizes")
            return
            
        #hist_classes_superpixels = np.zeros((qtd_superpixel, qtd_classes), np.int)      
    
        #for i in range(0, tam_gt[0]):
        #    for j in range(0, tam_gt[1]):          
        #        class_pixel = self._image_gt[i,j]
        #        if class_pixel > qtd_classes:
        #            self.tk.write_log("There is no class for the pixel [%d,%d] = %d on the image", i, j, class_pixel)
        #        else:
        #            #segment, size_segment, idx_segment, run_time = self.segmenter.get_segment(px = j, py = i)
        #            idx_segment = self.segmenter._segments[i, j]
        #            hist_classes_superpixels[idx_segment, class_pixel] = hist_classes_superpixels[idx_segment, class_pixel] + 1
        #    if i % 10 == 0:
        #        self.tk.write_log("Annotating row %d of %d", i, tam_gt[0])
                
        qtd_bad_superpixels = 0
        
        for idx_segment in range(0, qtd_superpixel):
            hist_classes_superpixels = np.histogram(self._image_gt[self.segmenter._segments == idx_segment], bins=range(0,len(self.classes)+1))[0]

            idx_class = np.argmax(hist_classes_superpixels)
            sum_vector = np.sum(hist_classes_superpixels)
            if refresh_image:
                self._image, run_time = self.segmenter.paint_segment(self._image, self.classes[idx_class]["color"].value, idx_segment = [idx_segment])
            #self.tk.append_log("posicao maior = %x  --  soma vetor %d", x, sum_vector)
            if hist_classes_superpixels[idx_class]/sum_vector < 0.5:
                qtd_bad_superpixels = qtd_bad_superpixels + 1

            if self._ground_truth == True:
                self._gt_segments[idx_segment] = self.classes[self._current_class]["name"].value

            elif self._dataset_generator == True:
                if idx_segment % 10 == 0:
                    self.tk.write_log("Saving %d of %d", (idx_segment+1), qtd_superpixel)

                segment, size_segment, idx_segment, run_time = self.segmenter.get_segment(idx_segment = idx_segment)
                filepath = File.save_class_image(segment, self.dataset, self.classes[idx_class]["name"].value, self._image_name, idx_segment)
                if filepath:
                    self.tk.append_log("\nSegment saved in %s", filepath)

        self.tk.refresh_image(self._image)
        self.tk.write_log("%d bad annotated superpixels of %d superpixel (%0.2f)", qtd_bad_superpixels, qtd_superpixel, (float(qtd_bad_superpixels)/qtd_superpixel)*100)



    def run_segmenter_folder(self, foldername=None):

        if foldername is None:
            foldername = self.tk.utils.ask_directory()

        valid_images_extension = ['.jpg', '.png', '.gif', '.jpeg', '.tif']

        fileimages = [name for name in os.listdir(foldername)
                    if os.path.splitext(name)[-1].lower() in valid_images_extension]

        for (i,file) in enumerate(fileimages):
            path_file = os.path.join(foldername, file)
            self.open_image(path_file)
            self.run_segmenter(refresh_image=False)
            label_image = (os.path.splitext(file)[-2] + '_json')
            self.assign_using_labeled_image(os.path.join(foldername, label_image, 'label.png'), refresh_image=False)
            self.tk.write_log("%d of %d images", i, len(fileimages))

    def run_classifier_folder(self, foldername=None):

        if self.classifier is None:
            raise IException("Classifier not found!")

        if foldername is None:
            foldername = self.tk.utils.ask_directory()

        valid_images_extension = ['.jpg', '.png', '.gif', '.jpeg', '.tif']

        fileimages = [name for name in os.listdir(foldername)
                    if os.path.splitext(name)[-1].lower() in valid_images_extension]

        fileimages.sort()

        all_accuracy = []
        all_IoU = []
        all_frequency_weighted_IU = []

        for file in fileimages:
            path_file = os.path.join(foldername, file)
            self.open_image(path_file)
            self.run_classifier()
            label_image = os.path.join(foldername, (os.path.splitext(file)[-2] + '_json'), 'label.png')
            self._image_gt = File.open_image_lut(label_image)
            self._image_gt_name = File.get_filename(label_image)

            tam_gt = self._image_gt.shape
            tam_im = self._mask_image.shape
            if len(tam_gt) > 2:
                self.tk.write_log("Color image is not supported. You must open a gray-scale image")
                return

            if tam_gt[0] != tam_im[0] or tam_gt[1] != tam_im[1]:
                self.tk.write_log("Images with different sizes")
                return

            
            confusion_matrix = MetricUtils.confusion_matrix(self._mask_image, self._image_gt)
            [mean_accuracy, accuracy] = MetricUtils.mean_accuracy(self._mask_image, self._image_gt)
            [mean_IoU, IoU] = MetricUtils.mean_IU(self._mask_image, self._image_gt)
            frequency_weighted_IU = MetricUtils.frequency_weighted_IU(self._mask_image, self._image_gt)

            print('Matriz de Confusao')
            print(confusion_matrix)

            print('Mean Pixel Accuracy')
            print(mean_accuracy)

            print('Pixel accuracy per class')
            print(accuracy)

            print('Mean Intersction over Union')
            print(mean_IoU)

            print('Intersction over Union per class')
            print(IoU)

            print('Frequency Weighted IU')
            print(frequency_weighted_IU)

            all_accuracy.append(accuracy)
            all_IoU.append(IoU)
            all_frequency_weighted_IU.append(frequency_weighted_IU)

            if not os.path.exists("../models_results/"):
                os.makedirs("../models_results/")
            
            path = File.make_path("../models_results/" + file + ".txt")
            path_img = File.make_path("../models_results/" + file + "_seg1.tif")
            path_img2 = File.make_path("../models_results/" + file + "_seg2.tif")

            img = Image.fromarray(self._image)
            img.save(path_img)
            img = Image.fromarray(self.class_color)
            img.save(path_img2)
            
            f=open(path,'ab')
            np.savetxt(f, ['Matriz de confusao'], fmt='%s')
            np.savetxt(f, confusion_matrix, fmt='%.5f')
            np.savetxt(f, ['\nAcuracia'], fmt='%s')
            np.savetxt(f, accuracy, fmt='%.5f')
            np.savetxt(f, ['\nInterseccao sobre uniao'], fmt='%s')
            np.savetxt(f, IoU, fmt='%.5f')
            np.savetxt(f, ['\nInterseccao sobre uniao com peso'], fmt='%s')
            np.savetxt(f, [frequency_weighted_IU], fmt='%.5f')
            f.close()


        path = File.make_path("../models_results/all_metrics.txt")
        f=open(path,'ab')
        np.savetxt(f, ['All Acuracia'], fmt='%s')
        np.savetxt(f, all_accuracy, fmt='%.5f')
        np.savetxt(f, ['\nAll IoU'], fmt='%s')
        np.savetxt(f, all_IoU, fmt='%.5f')
        np.savetxt(f, ['\nAll Frequency Weighted IU'], fmt='%s')
        np.savetxt(f, all_frequency_weighted_IU, fmt='%.5f')
        f.close()