pynovisao.py 23.7 KB
Newer Older
1 2 3 4
#!/usr/bin/python
# -*- coding: utf-8 -*-
#
"""
5 6 7 8
    This file must contain the implementation code for all actions of pynovisao.
    
    Name: pynovisao.py
    Author: Alessandro dos Santos Ferreira ( santosferreira.alessandro@gmail.com )
9 10 11 12
"""

from collections import OrderedDict

13 14
import interface
from interface.interface import InterfaceException as IException
15

16
import segmentation
17
import extraction
18
from extraction import FeatureExtractor
19
import classification
20

21 22 23
import util
from util.config import Config
from util.file_utils import File as f
24
from util.utils import TimeUtils
25 26

class Act(object):
27
    """Store all actions of Pynovisao."""
28 29

    def __init__(self, tk, args):
30 31 32 33 34 35 36 37 38
        """Constructor.

        Parameters
        ----------
        tk : Interface
            Pointer to interface that handles UI.
        args : Dictionary
            Arguments of program.
        """
39
        self.tk = tk
40 41 42
        
        self.segmenter = [segmentation._segmenter_list[segmenter].meta for segmenter in segmentation._segmenter_list
                            if segmentation._segmenter_list[segmenter].value == True ][0]()
43 44 45
        
        self.extractors = [extraction._extractor_list[extractor].meta for extractor in extraction._extractor_list
                            if extraction._extractor_list[extractor].value == True ]
46 47 48 49 50 51
        
        try:
            self.classifier = [classification._classifier_list[classifier].meta for classifier in classification._classifier_list
                                if classification._classifier_list[classifier].value == True ][0]()
        except:
            self.classifier = None
52

53 54 55
        self._image = None
        self._const_image = None
        self._image_name = None
56
                    
57 58
        self._init_dataset(args["dataset"])
        self._init_classes(args["classes"], args["colors"])
59 60
        
        self._dataset_generator = True
61

62
    
63
    def _init_dataset(self, directory):
64 65 66 67 68 69 70
        """Initialize the directory of image dataset.

        Parameters
        ----------
        directory : string
            Path to directory.
        """
71 72 73 74 75
        if(directory[-1] == '/'):
            directory = directory[:-1]
            
        self.dataset = directory
        f.create_dir(self.dataset)
76
    
77
    def _init_classes(self, classes = None, colors = None):
78 79 80 81 82 83 84 85 86 87
        """Initialize the classes of dataset.

        Parameters
        ----------
        classes : list of string, optional, default = None
            List of classes. If not informed, the metod set as classes all classes in dataset. 
            If there's no classes in dataset, adds two default classes.
        colors : list of string, optional, default = None
            List de colors representing the color of classe, in same order. If not informed, chooses a color at random.
        """
88 89 90 91 92 93 94 95 96 97 98 99
        self.classes = []
        
        classes = sorted(f.list_dirs(self.dataset)) if classes is None else classes.split()
        colors = [] if colors is None else colors.split()

        if(len(classes) > 0):
            for i in range(0, len(classes)):
                self.add_class(dialog = False, name=classes[i], color=colors[i] if i < len(colors) else None)
        else:
            self.add_class(dialog = False, color='Green')
            self.add_class(dialog = False, color='Yellow')
            
100
        self._current_class = 0
101
        
102

103
    def open_image(self, imagename = None):
104 105 106 107 108 109 110
        """Open a new image.

        Parameters
        ----------
        imagename : string, optional, default = None
            Filepath of image. If not informed open a dialog to choose.
        """
111 112
        
        def onclick(event):
113
            """Binds dataset generator event to click on image."""
114
            if event.xdata != None and event.ydata != None and int(event.ydata) != 0 and self._dataset_generator == True:
115 116
                x = int(event.xdata)
                y = int(event.ydata)
117 118 119 120 121 122 123
                self.tk.write_log("Coordinates: x = %d y = %d", x, y)
                
                segment, size_segment, idx_segment, run_time = self.segmenter.get_segment(x, y)
                
                if size_segment > 0:
                    self.tk.append_log("\nSegment = %d: %0.3f seconds", idx_segment, run_time)
                    
124
                    self._image, run_time = self.segmenter.paint_segment(self._image, self.classes[self._current_class]["color"].value, x, y)
125
                    self.tk.append_log("Painting segment: %0.3f seconds", run_time)
126
                    self.tk.refresh_image(self._image)
127
                    
128
                    filepath = f.save_class_image(segment, self.dataset, self.classes[self._current_class]["name"].value, self._image_name, idx_segment)
129 130 131 132 133
                    if filepath:
                        self.tk.append_log("\nSegment saved in %s", filepath)
        
        if imagename is None:
            imagename = self.tk.utils.ask_image_name()
134 135

        if imagename:
136 137
            self._image = f.open_image(imagename)
            self._image_name = f.get_filename(imagename)
138

139 140 141
            self.tk.write_log("Opening %s...", self._image_name)
            self.tk.add_image(self._image, self._image_name, onclick)
            self._const_image = self._image
142
            
143 144
            self.segmenter.reset()

145 146
        
    def restore_image(self):
147 148
        """Refresh the image and clean the segmentation.
        """
149 150 151 152
        if self._const_image is not None:
            self.tk.write_log("Restoring image...")
            self.tk.refresh_image(self._const_image)
            
153
            self.segmenter.reset()
154 155
        
    def close_image(self):
156
        """Close the image.
157
        
158 159 160 161 162
        Raises
        ------
        IException 'Image not found'
            If there's no image opened.
        """
163
        if self._const_image is None:
164 165 166 167
            raise IException("Image not found")
        
        if self.tk.close_image():
            self.tk.write_log("Closing image...")
168
            self._const_image = None
169
            self._image = None
170 171

    def add_class(self, dialog = True, name = None, color = None):
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        """Add a new class.

        Parameters
        ----------
        dialog : boolean, optional, default = True
            If true open a config dialog to add the class.
        name : string, optional, default = None
            Name of class. If not informed set the name 'Class_nn' to class.
        color : string, optional, default = None
            Name of color in X11Color format, representing the class. It will used to paint the segments of class.
            If not informed choose a color at random.
            
        Raises
        ------
        IException 'You have reached the limite of %d classes'
            If you already have created self.tk.MAX_CLASSES classes.
        """
189 190 191
        n_classes = len(self.classes)
        if n_classes >= self.tk.MAX_CLASSES:
            raise IException("You have reached the limite of %d classes" % self.tk.MAX_CLASSES)
192
                
193
        def edit_class(index):
194
            """Calls method that edit the class."""
195
            self.edit_class(index)
196 197
            
        def update_current_class(index):
198
            """Calls method that update the class."""
199
            self.update_current_class(index)
200 201
        
        def process_config():
202
            """Add the class and refresh the panel of classes."""
203
            new_class = self.tk.get_config_and_destroy()
204
            new_class["name"].value = '_'.join(new_class["name"].value.split())
205 206 207

            self.classes.append( new_class )
            self.tk.write_log("New class: %s", new_class["name"].value)
208
            self.tk.refresh_panel_classes(self.classes, self._current_class)
209
            
210 211
        if name is None:
            name = "Class_%02d" % (n_classes+1)
212
        if color is None:
213
            color = util.X11Colors.random_color()
214 215
            
        class_config = OrderedDict()
216
        class_config["name"] = Config(label="Name", value=name, c_type=str)
217
        class_config["color"] = Config(label="Color (X11 Colors)", value=color, c_type='color')
218 219
        class_config["callback"] = Config(label=None, value=update_current_class, c_type=None, hidden=True)
        class_config["callback_color"] = Config(label=None, value=edit_class, c_type=None, hidden=True)
220 221 222 223 224 225 226
        class_config["args"] = Config(label=None, value=n_classes, c_type=int, hidden=True)
        
        if dialog == False:
            self.classes.append( class_config )
            return 

        title = "Add a new classe"
227 228 229
        self.tk.dialogue_config(title, class_config, process_config)        
      

230
    def edit_class(self, index):
231 232 233 234 235 236 237
        """Edit a class.

        Parameters
        ----------
        index : integer.
            Index of class in list self.classes.
        """
238
        def process_update(index):
239
            """Update the class."""
240
            updated_class = self.tk.get_config_and_destroy()
241
            updated_class["name"].value = '_'.join(updated_class["name"].value.split())
242 243 244
            
            self.classes[index] = updated_class
            self.tk.write_log("Class updated: %s", updated_class["name"].value)
245
            self.tk.refresh_panel_classes(self.classes, self._current_class)
246 247 248 249 250 251
        
        current_config = self.classes[index]
            
        title = "Edit class %s" % current_config["name"].value
        self.tk.dialogue_config(title, current_config, lambda *_ : process_update(index))
            
252
    def update_current_class(self, index):
253 254
        """Update the current class.
        """
255
        self._current_class = index
256 257
        
    def get_class_by_name(self, name):
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        """Return the index for class.
        
        Parameters
        ----------
        name : string.
            Name of class.
            
        Returns
        -------
        index : integer.
            Index of class in list self.classes.

        Raises
        ------
        Exception 'Class not found'
            If name not found in self.classes.
        """
275 276 277 278 279 280
        name = name.strip()
        
        for cl in self.classes:
            if cl["name"].value == name:
                return cl
        raise Exception("Class not found")
281

282
        
283
    def set_dataset_path(self):
284 285
        """Open a dialog to choose the path to directory of image dataset.
        """
286 287
        directory = self.tk.utils.ask_directory(default_dir = self.dataset)
        if directory:
288
            self._init_dataset(directory)
289 290
            self.tk.write_log("Image dataset defined: %s", self.dataset)
            
291
            self._init_classes()
292
            self.tk.refresh_panel_classes(self.classes)
293
            
294 295
            if self.classifier: self.classifier.reset()
            
296
    def toggle_dataset_generator(self):
297 298
        """Enable/disable the dataset generator on click in image.
        """
299
        self._dataset_generator = not self._dataset_generator
300

301 302
            
    def select_segmenter(self):
303 304
        """Open a dialog to choose the segmenter.
        """
305 306
        title = "Choosing a segmenter"
        self.tk.write_log(title)
307

308
        current_config = segmentation.get_segmenter_config()
309
        
310
        def process_config():
311
            """Update the current segmenter."""
312
            new_config = self.tk.get_config_and_destroy()
313

314 315 316
            self.segmenter = [new_config[segmenter].meta for segmenter in new_config
                                if new_config[segmenter].value == True ][0]()

317
            self.tk.append_log("\nSegmenter: %s\n%s", str(self.segmenter.get_name()), str(self.segmenter.get_summary_config()))
318 319 320 321 322
            segmentation.set_segmenter_config(new_config)

        self.tk.dialogue_choose_one(title, current_config, process_config)

    def config_segmenter(self):
323 324
        """Open a dialog to configure the current segmenter.
        """
325 326 327 328 329 330
        title = "Configuring %s" % self.segmenter.get_name()
        self.tk.write_log(title)

        current_config = self.segmenter.get_config()
        
        def process_config():
331
            """Update the configs of current segmenter."""
332 333 334
            new_config = self.tk.get_config_and_destroy()

            self.segmenter.set_config(new_config)
335
            self.tk.append_log("\nConfig updated:\n%s", str(self.segmenter.get_summary_config()))
336
            self.segmenter.reset()
337 338

        self.tk.dialogue_config(title, current_config, process_config)
339 340
        
    def run_segmenter(self):
341
        """Do the segmentation of image, using the current segmenter.
342
        
343 344 345 346 347
        Raises
        ------
        IException 'Image not found'
            If there's no image opened.
        """
348 349 350
        if self._const_image is None:
            raise IException("Image not found")
        
351
        self.tk.write_log("Running %s...", self.segmenter.get_name())
352 353 354 355 356 357

        self.tk.append_log("\nConfig: %s", str(self.segmenter.get_summary_config()))
        self._image, run_time = self.segmenter.run(self._const_image)
        self.tk.append_log("Time elapsed: %0.3f seconds", run_time)
        
        self.tk.refresh_image(self._image)
358 359


360
    def select_extractors(self):
361
        """Open a dialog to select the collection of extractors.
362
        
363 364 365 366 367
        Raises
        ------
        IException 'Please select at least one extractor'
            If no extractor was selected.
        """
368 369 370 371 372 373
        title = "Selecting extractors"
        self.tk.write_log(title)

        current_config = extraction.get_extractor_config()
        
        def process_config():
374
            """Update the collection of extractors."""
375 376 377 378
            new_config = self.tk.get_config_and_destroy()

            self.extractors = [new_config[extractor].meta for extractor in new_config
                                if new_config[extractor].value == True ]
379 380 381
                                
            if len(self.extractors) == 0:
                raise IException("Please select at least one extractor")
382 383 384 385 386 387 388

            self.tk.append_log("\nConfig updated:\n%s", 
                                '\n'.join(["%s: %s" % (new_config[extractor].label, "on" if new_config[extractor].value==True else "off")
                                            for extractor in new_config]))
            extraction.set_extractor_config(new_config)

        self.tk.dialogue_select(title, current_config, process_config)
389 390
        
    def run_extractors(self):
391 392
        """Perform a feature extraction on all images of dataset, using the current collection of extractors.
        """
393
        self.tk.write_log("Running extractors on all images in %s", self.dataset)
394

395 396 397
        fextractor = FeatureExtractor(self.extractors)
        self.tk.append_log("%s", '\n'.join([extraction._extractor_list[extractor].label for extractor in extraction._extractor_list
                                                if extraction._extractor_list[extractor].value == True ]))
398
        
399
        output_file, run_time = fextractor.extract_all(self.dataset, "training")
400 401
        self.tk.append_log("\nOutput file saved in %s", output_file)
        self.tk.append_log("Time elapsed: %0.3f seconds", run_time)
402 403
        
        if self.classifier: self.classifier.reset()
404

405 406
        
    def select_classifier(self):
407 408 409 410 411 412 413
        """Open a dialog to select the classifier.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
414 415 416 417 418 419 420 421 422
        if self.classifier is None:
            raise IException("You must install python-weka-wrapper")
        
        title = "Choosing a classifier"
        self.tk.write_log(title)

        current_config = classification.get_classifier_config()
        
        def process_config():
423
            """Update the current classifier."""
424 425 426 427 428 429 430 431 432 433 434
            new_config = self.tk.get_config_and_destroy()

            self.classifier = [new_config[classifier].meta for classifier in new_config
                                if new_config[classifier].value == True ][0]()

            self.tk.append_log("\nClassifier: %s\n%s", str(self.classifier.get_name()), str(self.classifier.get_summary_config()))
            classification.set_classifier_config(new_config)

        self.tk.dialogue_choose_one(title, current_config, process_config)
        
    def configure_classifier(self):
435 436 437 438 439 440 441
        """Set the configuration of current classifier.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
442 443 444 445 446 447 448 449 450 451 452 453 454
        if self.classifier is None:
            raise IException("You must install python-weka-wrapper")
        
        title = "Configuring %s" % self.classifier.get_name()
        self.tk.write_log(title)

        current_config = self.classifier.get_config()
        
        def process_config():
            new_config = self.tk.get_config_and_destroy()

            self.classifier.set_config(new_config)
            self.tk.append_log("\nConfig updated:\n%s", str(self.classifier.get_summary_config()))
455 456
            
            if self.classifier: self.classifier.reset()
457 458 459 460 461

        self.tk.dialogue_config(title, current_config, process_config)
    
    
    def run_classifier(self):
462 463 464 465 466 467 468 469 470 471
        """Run the classifier on the current image.
        As result, paint the image with color corresponding to predicted class of all segment.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        IException 'Image not found'
            If there's no image opened.
        """
472 473 474 475 476 477 478 479 480 481 482
        if self.classifier is None:
            raise IException("You must install python-weka-wrapper")
        
        if self._const_image is None:
            raise IException("Image not found")
        
        self.tk.write_log("Running %s...", self.classifier.get_name())
        self.tk.append_log("\n%s", str(self.classifier.get_summary_config()))
        
        start_time = TimeUtils.get_time()

483
        # Perform a segmentation, if needed.
484 485 486 487 488 489 490 491
        list_segments = self.segmenter.get_list_segments()
        if len(list_segments) == 0:
            self.tk.append_log("Running %s... (%0.3f seconds)", self.segmenter.get_name(), (TimeUtils.get_time() - start_time))
            
            self._image, _ = self.segmenter.run(self._const_image)
            self.tk.refresh_image(self._image)        
            list_segments = self.segmenter.get_list_segments()
        
492
        # Train the classifier ( this program does not perform the training of ConvNets ).
493
        if self.classifier.must_train():
494
            self.tk.append_log("Creating training data... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
495 496
            
            fextractor = FeatureExtractor(self.extractors)
497
            output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
498 499 500
        
            self.tk.append_log("Training classifier... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
            
501
            self.classifier.train(self.dataset, "training")
502 503 504
        
        self._image = self._const_image

505
        
506
        #  New and optimized classification
507 508
        tmp = ".tmp"
        f.remove_dir(f.make_path(self.dataset, tmp))
509

510 511 512 513 514
        self.tk.append_log("Generating test images... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
        
        len_segments = {}
        for idx_segment in list_segments:
            segment, size_segment, idx_segment = self.segmenter.get_segment(self, idx_segment=idx_segment)[:-1]
515
            
516 517
            filepath = f.save_class_image(segment, self.dataset, tmp, self._image_name, idx_segment)
            len_segments[idx_segment] = size_segment
518
            
519
        # Perform the feature extraction of all segments in image ( not applied to ConvNets ).
520 521
        if self.classifier.must_train():
            self.tk.append_log("Running extractors on test images... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
522
            
523 524 525
            output_file, _ = fextractor.extract_all(self.dataset, "test", dirs=[tmp])
                
        self.tk.append_log("Running classifier on test data... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
526 527

        # Get the label corresponding to predict class for each segment of image.
528
        labels = self.classifier.classify(self.dataset, test_dir=tmp, test_data="test.arff")
529 530 531 532
        f.remove_dir(f.make_path(self.dataset, tmp))
        
        self.tk.append_log("Painting segments... (%0.3f seconds)", (TimeUtils.get_time() - start_time))
        
533

534
        # Create a popup with results of classification.
535 536 537 538 539
        popup_info = "%s\n" % str(self.classifier.get_summary_config())
        
        len_total = sum([len_segments[idx] for idx in len_segments])
        popup_info += "%-16s%-16s%0.2f%%\n" % ("Total", str(len_total), (len_total*100.0)/len_total)
        
540
        # Paint the image.
541 542 543 544 545 546 547 548 549 550 551 552
        for cl in self.classes:
            idx_segment = [ list_segments[idx] for idx in range(0, len(labels)) if cl["name"].value == labels[idx]]
            if len(idx_segment) > 0:
                self._image, _ = self.segmenter.paint_segment(self._image, cl["color"].value, idx_segment=idx_segment, border=False)
              
            len_classes = sum([len_segments[idx] for idx in idx_segment])
            popup_info += "%-16s%-16s%0.2f%%\n" % (cl["name"].value, str(len_classes), (len_classes*100.0)/len_total)

        self.tk.refresh_image(self._image)
        self.tk.popup(popup_info)

        
553 554 555 556 557
        end_time = TimeUtils.get_time()
            
        self.tk.append_log("\nClassification finished")
        self.tk.append_log("Time elapsed: %0.3f seconds", (end_time - start_time))

558

559
    def cross_validation(self):
560 561 562 563 564 565 566
        """Run a cross validation on all generated segments in image dataset.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
        if self.classifier is None:
            raise IException("You must install python-weka-wrapper")
        
        if self.classifier.must_train():
            self.tk.write_log("Creating training data...")
            
            fextractor = FeatureExtractor(self.extractors)
            output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
            self.classifier.train(self.dataset, "training")
        
        self.tk.write_log("Running Cross Validation on %s...", self.classifier.get_name())
        self.tk.append_log("\n%s", str(self.classifier.get_summary_config()))
        
        popup_info = self.classifier.cross_validate()
        self.tk.append_log("Cross Validation finished")
        self.tk.popup(popup_info)
583 584
        
    def experimenter_all(self):
585 586 587 588 589 590 591
        """Perform a test in all availabel classifiers e show the results.
        
        Raises
        ------
        IException 'You must install python-weka-wrapper'
            The user must install the required dependencies to classifiers.
        """
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
        if self.classifier is None:
            raise IException("You must install python-weka-wrapper")
        
        if self.tk.ask_ok_cancel("Experimenter All", "This may take several minutes to complete. Are you sure?"):
            if self.classifier.must_train():
                self.tk.write_log("Creating training data...")
                
                fextractor = FeatureExtractor(self.extractors)
                output_file, run_time = fextractor.extract_all(self.dataset, "training", overwrite = False)
                self.classifier.train(self.dataset, "training")
                
            self.tk.write_log("Running Experimenter All on %s...", self.classifier.get_name())
            
            popup_info = self.classifier.experimenter()
            self.tk.append_log("\nExperimenter All finished")
            self.tk.popup(popup_info)
608 609


610
    def func_not_available(self):
611
        """Use this method to bind menu options not available."""
612
        self.tk.write_log("This functionality is not available right now.")
613