#!/usr/bin/python # -*- coding: utf-8 -*- # """ Extract HOG (Histogram of Oriented Gradient) feature. Dalal, N and Triggs, B, Histograms of Oriented Gradients for Human Detection, IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005 San Diego, CA, USA Name: hog.py Author: Alessandro dos Santos Ferreira ( santosferreira.alessandro@gmail.com ) """ from skimage import feature from util.utils import ImageUtils from extractor import Extractor class HOG(Extractor): def __init__(self): pass def run(self, image): image_grayscale = ImageUtils.image_grayscale(image, bgr = True) image_128x128 = ImageUtils.image_resize(image_grayscale, 128, 128) values, _ = feature.hog(image_128x128, orientations=8, pixels_per_cell=(32, 32), cells_per_block=(1, 1), visualise=True) labels = [m+n for m,n in zip(['hog_'] * len(values),map(str,range(0,len(values))))] types = [Extractor.NUMERIC] * len(labels) return labels, types, list(values)