Commit 8bba4c04 authored by Gilberto Astolfi's avatar Gilberto Astolfi
Browse files

adicionada menu para o keras, criada a classe do keras

parent a0bad5d2
......@@ -10,6 +10,11 @@ try:
except:
CNNCaffe = None
try:
from .cnn_keras import CNNKeras
except:
CNNKeras = None
__all__ = ["cnn_caffe",
"classifier",
"weka_classifiers"]
......@@ -22,6 +27,8 @@ from util.config import Config
_classifier_list = OrderedDict( [
["cnn_caffe", Config("Invalid" if CNNCaffe is None else CNNCaffe.__name__,
WekaClassifiers is None and CNNCaffe is not None, bool, meta=CNNCaffe, hidden=CNNCaffe is None)],
["cnn_keras", Config("Invalid" if CNNKeras is None else CNNKeras.__name__,
CNNKeras is not None, bool, meta=CNNKeras, hidden=CNNKeras is None)],
["weka_classifiers", Config("Invalid" if WekaClassifiers is None else WekaClassifiers.__name__,
WekaClassifiers is not None, bool, meta=WekaClassifiers, hidden=WekaClassifiers is None)]
] )
......
#!/usr/bin/python
# -*- coding: utf-8 -*-
#
"""
Generic classifier with multiple models
Models -> (Xception, VGG16, VGG19, ResNet50, InceptionV3, MobileNet)
Name: cnn_keras.py
Author: Gabriel Kirsten Menezes (gabriel.kirsten@hotmail.com)
"""
import time
import os
from keras import applications
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.models import Model
from keras.layers import Dropout, Flatten, Dense
from keras.callbacks import ModelCheckpoint
from sklearn.metrics import confusion_matrix
from classifier import Classifier
from collections import OrderedDict
from util.config import Config
from util.file_utils import File
from util.utils import TimeUtils
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress warnings
START_TIME = time.time()
# =========================================================
# Constants
# =========================================================
IMG_WIDTH, IMG_HEIGHT = 256, 256
TRAIN_DATA_DIR = "../data/train"
VALIDATION_DATA_DIR = "../data/validation"
BATCH_SIZE = 16
EPOCHS = 50
CLASS_NAMES = ['ferrugemAsiatica', 'folhaSaudavel',
'fundo', 'manchaAlvo', 'mildio', 'oidio']
class CNNKeras(Classifier):
def __init__(self):
model = applications.VGG16(
weights="imagenet", include_top=False, input_shape=(IMG_WIDTH, IMG_HEIGHT, 3))
for layer in model.layers:
layer.trainable = True
# Adding custom Layers
new_custom_layers = model.output
new_custom_layers = Flatten()(new_custom_layers)
new_custom_layers = Dense(1024, activation="relu")(new_custom_layers)
new_custom_layers = Dropout(0.5)(new_custom_layers)
new_custom_layers = Dense(1024, activation="relu")(new_custom_layers)
predictions = Dense(6, activation="softmax")(new_custom_layers)
# creating the final model
model_final = Model(inputs=model.input, outputs=predictions)
# compile the model
model_final.compile(loss="categorical_crossentropy",
optimizer=optimizers.SGD(lr=0.0001, momentum=0.9),
metrics=["accuracy"])
def get_config(self):
"""Return configuration of classifier.
Returns
-------
config : OrderedDict
Current configs of classifier.
"""
pass
def set_config(self, configs):
"""Update configuration of classifier.
Parameters
----------
configs : OrderedDict
New configs of classifier.
"""
pass
def get_summary_config(self):
"""Return fomatted summary of configuration.
Returns
-------
summary : string
Formatted string with summary of configuration.
"""
pass
def classify(self, dataset, test_dir, test_data):
pass
def train(self, model_final):
# Initiate the train and test generators with data Augumentation
train_datagen = ImageDataGenerator(
rescale=1. / 255,
horizontal_flip=True,
fill_mode="nearest",
zoom_range=0.3,
width_shift_range=0.3,
height_shift_range=0.3,
rotation_range=30)
train_generator = train_datagen.flow_from_directory(
TRAIN_DATA_DIR,
target_size=(IMG_HEIGHT, IMG_WIDTH),
batch_size=BATCH_SIZE,
shuffle=True,
class_mode="categorical")
test_datagen = ImageDataGenerator(
rescale=1. / 255,
horizontal_flip=True,
fill_mode="nearest",
zoom_range=0.3,
width_shift_range=0.3,
height_shift_range=0.3,
rotation_range=30)
validation_generator = test_datagen.flow_from_directory(
VALIDATION_DATA_DIR,
target_size=(IMG_HEIGHT, IMG_WIDTH),
batch_size=BATCH_SIZE,
shuffle=True,
class_mode="categorical")
# Save the model according to the conditions
checkpoint = ModelCheckpoint("../models_checkpoints/" + file_name + ".h5", monitor='val_acc',
verbose=1, save_best_only=True, save_weights_only=False,
mode='auto', period=1)
# Train the model
model_final.fit_generator(
train_generator,
steps_per_epoch=train_generator.samples // BATCH_SIZE,
epochs=EPOCHS,
callbacks=[checkpoint],
validation_data=validation_generator,
validation_steps=validation_generator.samples // BATCH_SIZE)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment